Project description:This trial evaluates the effects a moderate-to-vigorous exercise intervention has on the bacterial make-up of the gastrointestinal tract (gut microbiota) in survivors of stage II-III colorectal cancer (CRC). Data shows that the gut microbiota composition and function may be drivers of CRC. High levels of exercise are associated with improved CRC prognosis and survival. While data suggests that exercise has the potential to influence gut microbiota composition and function, it is not known whether these effects contribute to improved CRC prognosis. This clinical trial evaluates the effects an exercise intervention has on gut microbiota and how these effects relate to CRC progression and patient-reported outcomes.
Project description:Advanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study gut microbiota from young or old conventional mice was transferred to young germ-free mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyer’s patches, and mesenteric lymph nodes from conventionalized germ-free mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here we show by transferring aged microbiota to young germ-free mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the germ-free mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young germ-free mice.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.
Project description:This is a prospective study evaluating the relation between the gut microbiota composition, intestinal healing after colorectal surgery and colorectal cancer behavior.
Our hypothesis is that the gut microbiota composition could predict poor intestinal healing in colorectal surgery, and that the gut microbiota might have an impact on colorectal cancer clinical behavior and may predict disease outcomes.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Habitual exercise modulates the composition of the intestinal microbiota. We examined whether transplanting fecal microbiota from trained mice improved skeletal muscle metabolism in high-fat diet-fed mice. The recipient mice that received fecal samples from trained donor mice for 1 week showed elevated levels of metabolic signalings in skeletal muscle. Glucose tolerance was improved by fecal microbiota transplantation after 8 weeks of HFD administration. Intestinal microbiota may mediate exercise-induced metabolic improvement in mice. We performed a microarray analysis to compare the metabolic gene expression profiles in the skeletal muscle from each mouse.
Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.