Project description:Transcriptional profiling of human leukemia HL-60 cells comparing ATRA treated HL-60 cells with ATRA plus ATO. Goal was to determine the effects of ATO on ATRA induced differentiation of HL-60 cells.
Project description:Transcriptional profiling of human leukemia?HL-60 cells comparing ATRA treated HL-60 cells with ATRA plus ATO. Goal was to determine the effects of ATO on ATRA induced differentiation of HL-60 cells. Two-condition experiment, ATRA vs. ATRA plus ATO treated HL-60 cells.
Project description:We developed a general approach to small molecule library screening called GE-HTS (Gene Expression-Based High Throughput Screening) in which a gene expression signature is used as a surrogate for cellular states and applied it to the identification of compounds inducing the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we prioritized 15 candidate compounds (2 were already confirmed in the literature). We next evaluated the 13 remaining compounds. Eight reliably induced the differentiation signature, and furthermore yielded functional evidence of bona fide differentiation. This data set contains HL-60 cells treated in replicates of 3 with the original 13 selected candidates. It also contains 6 untreated, 6 DMSO treated, 3 ATRA treated, 3 PMA treated, and 3 1,25-dihydroxyvitamin D3 treated HL-60 controls. In addition, it contains 3 neutrophil and 3 monocyte samples from distinct normal human donors and 9 primary patient AML samples. This data set was used to evaluate the whole genome effects of the candidate compounds on HL-60 cells. Keywords = AML Keywords = leukemia Keywords = HL-60 Keywords = chemical genomics Keywords: repeat sample
Project description:All-trans retinoic acid (ATRA)-based differentiation therapy has achieved success with the treatment of acute promyelocytic leukemia (APL), a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. Here, we demonstrate that a novel natural vibsane-type diterpenoid vibsanine A promotes the differentiation of myeloid leukemia cell lines and primary AML blasts. To reveal how vibsanine A function on promoting myeloid leukemia cell differentiation, we analyzed and compared the gene expression profiles in myeloid leukemia HL-60 cells treated with vibsanine A, PMA, and ATRA. HL-60 cells were treated with vibsanine A, PMA and ATRA for 6 hours or longer up to 24 hours. Gene expression profiling was conducted
Project description:Searching for new strategies of acute myeloid leukemia (AML) treatment is of particular interest. Cell lines, e. g. HL-60 and NB4, represent model systems to study molecular features of leukemic cells. The all-trans-retinoic acid (ATRA) has proven itself to be an effective treatment for one of AML subtypes, i.e., acute promyelocytic leukemia (APL). At the same time, ATRA causes granulocytic differentiation of non-APL leukemic cells in vitro. Combination of new therapeutics with ATRA could improve efficiency of treatment. Studying the proteome perturbation in leukemic cells under the ATRA treatment allows to determine potential regulatory molecules that could be affected pharmacologically. Thus, the TMT-based proteomic profiles of HL-60, NB4, and K562 cell lines under the ATRA treatment were obtained at 0, 3, 12, 24, and 72 h after the ATRA treatment.
Project description:ATRA-induced differentiation of HL-60 cells was studied using targeted mass-spectrometry including selected reaction monitoring (SRM) and parallel reaction monitoring (PRM) approach. PRM experiment was performed in time-course manner, without peptide standards usage. PRM data was inspected in Skyline 3.1 software. In order to check peptide identity we developed spectrum library based on shotgun mass-spectrometry data, which has been obtained for HL-60 cells protein samples at 0, 3, 24, 48 and 96h after ATRA treatment.