Project description:Illumina high-throughput sequencing was used to analyse the intestinal bacteria of these two species during different wintering periods at Shengjin Lake. We tested whether contact time enhances the trans-species spread of gut bacteria. Our results indicate that although intestinal microflora of hooded crane and the bean goose were different, direct or indirect contact in the mixed-species flock caused the spread of gut bacteria trans-species, and a very high proportion of common pathogens among these two hosts.
Project description:This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ The human-infective whipworm Trichuris trichiura is estimated to infect up to a billion people and is responsible for considerable morbidity, especially in children of developing countries. The closely related species T. muris is a naturally occurring nematode parasite of mice that serves as a remarkably tractable model system for dissecting immune responses and host-parasite relationships. Such studies are of relevance beyond parasitology as helminths have arguably had a significant impact on the evolution of the mammalian immune system. Both Trichuris species reside in the caecum and colon of the host where they burrow their front end for feeding into the intestinal mucosa, thereby breaching the mucus barrier and allowing access of the microflora directly to the epithelium. The interplay of intestinal helminths, the bacterial microflora and the host immune system is currently a research focus in various laboratories (Bancroft et al 2012). This study will study the transcriptional responses of the intestinal mucosa (caecum) from infected and uninfected mice.
2013-05-07 | E-ERAD-181 | biostudies-arrayexpress
Project description:Effect of oxazepam on intestinal microflora
| PRJNA938608 | ENA
Project description:Intestinal microbial diversity analysis of groupers
Project description:The study describes miRNA expression in intact jejunum following feeding of gluten containing monkey chow to gluten sensitive (GS) rhesus macaques. Gluten feeding induced several inflammation associated miRNAs validated and predicted to directly target intestinal tight junction proteins. Upregulation of these microRNAs was accompanied significantly reduced mRNA expression of claudin-1, claudin-3 and occludin and severe gut dysbiosis. These findings suggest that miRNA mediated downregulation of intestinal epithelial tight junction proteins could increase intestinal permeability and facilitate translocation of dysbiotic bacteria into the systemic circulation.
Project description:The intestinal mucosa is the main organ that exerts nutrient absorption, which will further influence laying performance and egg nutrition in hens. Previously, we have screened out three strains of Lactobacillus (L. sa., L. ag. and L. av.) from a native chicken breed in China. However, the optimal regulation of Lactobacillus combination on poultry products needs to be verified. In this study, a total of 120 HyLine hens (n = 30) at the period of laying peak were randomly divided into four groups: (1) control, (2) L. sa. + L. ag., (3) L. sa. + L. av. and (4) L. ag. + L. av. groups, which were fed with corresponding Lactobacillus (10e8 CFUs/hen/day) for 30 consecutive days. Compared with the control group, feeding of L. sa. + L. ag. could improve the laying rate, egg weight, especially for higher amino acids level in albumen. The mechanism study showed that, in the intestine lumen, feeding of L. sa. + L.ag. could up-regulate the Lactobacillus abundance and down-regulate the Escherichia coli abundance. Meanwhile, the tryptophan metabolism pathway was up-regulated, the primary bile acid biosynthesis pathway was down-regulated. In the crypt, up-regulated genes involved the oxidative phosphorylation pathway and the ROS level were appeared in L. sa. + L.ag. feeding group. Our study further proved that the amount of Paneth cells and the mRNA abundance of Wnt3a and Dll1 in the crypt were up-regulated upon L. sa. + L. ag. feeding. Correspondingly, the mRNA abundance of Lgr5, CCND1 and CDK2 in the crypt were enhanced upon L. sa. + L. ag. feeding. In conclusion, co-feeding of L. sa. and L. ag. in hens could improve the gut microflora and altered the microflora metabolism profile in the intestine. Further, promote the crypt’s local energy metabolism and enhancing ROS level in the crypt, thereby enhance the activity of Paneth cell and regulate the activity of ISCs. Ultimately, the intestinal mucosal renewal and the laying performance were improved.
Project description:This study delineated how small intestinal resident microflora impact gene expression in Paneth cells. Keywords: functional genomics; transcriptional profiling
2006-06-28 | GSE5156 | GEO
Project description:Compound probiotics on cecal microflora