Project description:Targeting cellular RNA by small molecules has come to the forefront of biotechnology and holds great promise for therapeutic use. Strategies to identify, validate and optimize these molecules are essential, but are still lacking in some aspects. In particular, the site-specific covalent labeling and modification of RNA in living cells poses many challenges. Here, we describe a general structure-guided approach to engineer non-covalent RNA aptamer–ligand complexes into their covalent counterparts using a molecular tether. The key is to modify the native ligand with an electrophilic handle that allows it to react specifically with a guanine at the RNA ligand binding site. We show that site-specific cross-linking between ligand and RNA is achieved in mammalian cells upon transfection of a genetically encoded version of the preQ1-I riboswitch aptamer. Further, we showcase the versatility of the tether by engineering the first covalent fluorescent light-up aptamer (coFLAP) out of the non-covalent Pepper FLAP. The coPepper system maintains strong fluorescence in live-cell imaging even after repeated washing. Thus, any background signal arising from unspecific fluorophore accumulation in the cell can be eliminated. In addition, we generated a bifunctional Pepper ligand containing a second handle for bioorthogonal chemistry to allow for easily traceable and efficient pulldown of the covalently linked target RNA. Finally, we provide evidence for the suitability of this tethering strategy for specific drug targeting. Taken together, our results show that functionalized ligands generated by rational design can cross-link site-specifically with target RNAs in cells, and hence, open up a wide range of applications in RNA biology that require irreversible small molecule binding.
Project description:We genearted a DNA aptamer against EPX via SELEX protocol using a random DNA library and developed an assay to monitor EPX in patients spitum samples After 15 rounds of selection, the aptamer sequences were obtained by high throughput sequencing
Project description:We report the optimization and application of diazirine photocrosslinking probes that enable selective covalent crosslinking to the PreQ1 RNA aptamer and any other interacting RNAs in close proximity. By evaluating the impact of the linker structure and length on crosslinking efficiency we were able to shed important light on what factors have the largest impact on photocrosslinking efficiency in this model system. Additionally, the best compound (compound 11) was shown to efficiently and selectively crosslink site-specifically to the PreQ1 aptamer even in the presence of competing human cellular RNAs. Sequencing experiments were performed in human MCF-7 cell total RNA both with and without spike in of exogenous PreQ1 aptamer. In the aptamer spike-in samples, the only RNA target that was significantly enriched after differential expression analysis with the negative control (compound 17) was the PreQ1 aptamer suggesting that this compound does in fact selectively crosslink to the desired target even in the presence of other RNAs. Additionally, in the samples without spike-in of the aptamer we were able to identify 16 significantly enriched hit RNAs that may represent novel metabolite-RNA interactions. Competitive RT-qPCR experiments confirmed enrichment of a handful of select genes with 11 and showed that the free PreQ1 ligand, which lacks the diazrine crosslinking moeity, is able to compete away compound 11. This suggests that these interactions are specific.
2021-08-09 | GSE168353 | GEO
Project description:DNA aptamer of ASFV p30, SELEX library sequencing
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.
Project description:The experiments were carried out to map the ligand binding landscape of various DNA and RNA duplexed aptamer families. Duplexed Aptamer (DA) constructs were engineered from (i) natural and synthetic DNA and RNA aptamers and (i) synthetic oligonucleotide aptamer-complementary elements synthesized on custom DNA microarrays. The aptamers tested consist of the ATP DNA aptamer, the ATP RNA aptamer, the cocaine DNA aptamer, the human alpha-thrombin DNA aptamer, and the natural add riboswitch aptamer from the pathogenic bacteria Vibrio vulnificus. Each duplexed aptamer family consists of 1000's of synthetic constructs, each formed by hybridizing the aptamer with an aptamer-complementary element (ACE) - here, ACEs consisted of various DNA oligonucleotides synthesized as a custom DNA microarray.