Project description:This SuperSeries is composed of the following subset Series: GSE14047: Comparison between caruncles and intercaruncles in AI, IVF-ET and SCNT pregnancies GSE14050: AI versus IVF-ET & AI versus SCNT Refer to individual Series
Project description:Implantation is crucial for placental development whose quality will directly impact fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas at implantation in three types of pregnancies, namely artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially regulated genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the issue of pregnancy. Keywords: Fluorescence Microarray 30 samples
Project description:Implantation is crucial for placental development which directly impacts fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas during the critical period of implantation in three types of pregnancies: artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially expressed genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that the endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the pregnancy outlet. Keywords: Fluorescence Microarray - Dye switch loop design 44 samples
Project description:Implantation is crucial for placental development which directly impacts fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas during the critical period of implantation in three types of pregnancies: artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially expressed genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that the endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the pregnancy outlet. Keywords: Fluorescence Microarray - Dye switch loop design
Project description:Implantation is crucial for placental development whose quality will directly impact fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas at implantation in three types of pregnancies, namely artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially regulated genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the issue of pregnancy. Keywords: Fluorescence Microarray
Project description:Transcription profiling of placentomes derived from somatic cell nuclear transfer (SCNT), in vitro fertilization (IVF) and artificial insemination (AI) at or near term development was performed in order to better understand why SCNT and IVF often result in placental defects, hydrops and large offspring syndrome (LOS). Multivariate analysis of variance was used to distinguish the effects of SCNT, IVF and AI on gene expression, taking into account the effects of parturition, sex of the fetus, breed of dam, breed of fetus and disease status of the offspring. The differential expression of 21 physiologically important genes was confirmed using quantitative PCR. The largest effect on placentome gene expression was attributable to whether placentae were collected at term or preterm (whether the collection was due to disease or to obtain matching case-controls) followed by placentome source (AI, IVF or SCNT). Gene expression in SCNT placentomes was dramatically different from AI (N=336 genes; 276 >2-fold) and from IVF (N=733 genes; 162 >2-fold) placentomes. Functional analysis of differentially expressed genes (DEG) showed that IVF has significant effects on genes associated with cellular metabolism. In contrast, DEG associated with SCNT are involved in multiple pathways, including cell cycle, cell death, gene expression, posttranslational modification, molecular transport and connective tissue development. Many DEG were shared between the gene lists for IVF and SCNT comparisons, suggesting that common pathways are affected by the embryo culture methods used for IVF and SCNT. However, the many unique gene functions and pathways affected by SCNT suggest that cloned fetuses may be starved and accumulating toxic wastes due to placental insufficiency caused by reprogramming errors. Many of these genes are candidates for hydrops and LOS. Keywords: gene expression; development; SCNT; cloning; nuclear transfer; IVF; AI
Project description:Although somatic cell nuclear transfer (SCNT) cloning is more efficient in bovine than in all other species tested so far, there is a high rate of pregnancy failure that has been linked to structural and functional abnormalities of the placenta. We tested the hypothesis that these changes may originate from disturbed embryo-maternal interactions in the pre-implantation period. Therefore, we evaluated the transcriptome response of the endometrium to SCNT embryos (produced from five different donor cell cultures) as compared to embryos derived from in vitro fertilization (IVF). SCNT embryos and IVF embryos were cultured under identical conditions to the blastocyst stage (Day 8) and transferred to recipients. The recipients were slaughtered at day 18 of pregnancy and the uterus was recovered. Pregnancy was verified by the presence of at least one normally developed embryo. Transcriptome profiling of endometrium samples using a custom cDNA microarray covering transcripts expressed in the endometrium and/or oviduct epithelium revealed 58 transcripts that were differently abundant between endometrium samples from SCNT vs. IVF pregnancies. Prominent examples are NR2F2 (encoding the orphan nuclear receptor COUP-TFII) and GJA1 (encoding connexin 43). Both transcripts are known to play important roles in placentation and were significantly less abundant in endometrium from SCNT vs. IVF pregnancies. These findings suggest that placental failure in bovine clone pregnancies may originate from abnormal embryo-maternal communication already in the pre- or peri-implantation period. Endometrium transcriptome profiles may serve as a novel readout to evaluate SCNT embryos for their ability to induce pregnancy with a functional placenta. Keywords: response to different embryos Nineteen German Fleckvieh (Simmental) heifers were slaughtered at day 18 of pregnancy. Cycle-synchronized recipient heifers received either IVP or SCNT embryos at day 7 of the estrous cycle. Animals were slaughtered at day 18. Endometrial (intercaruncular) tissue samples were obtained from 10 pregnant animals after transfer of IVP embryos and from 9 pregnant animals after transfer of SCNT embryos.
Project description:Aberrant placental gene expression associated with culture condition and/or deficiencies in transcriptome reprogramming are hypothesized to be the major cause of SCNT and IVP inefficiencies. Therefore, the main objective of this study was to invesitgate the dysregulated genes, molecular pathways and functional alteration in bovine placentas derived from SCNT and IVP pregnancies compared to their AI counterparts Day 7 blastocysts derived from AI, IVP or SCNT were transferred to synchronized cows. The pregnant animals were slaughtered at day 50 of the gestation period and the placentas were then recovered and used for transcriptome analysis using GeneChip bovine genome array