Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:There remains an urgent need to delinate immune cell states that contribute to mortality in critially ill COVID-19 patients. To better understand determinants of mortality, we performed high dimensional profiling of blood and respiratory samples from critially ill COVID-19 patients. Single-cell RNAseq based characterization of peripheral immune states reveal distinct expression profiles that were predictive of COVID-19 mortality. Temporal analysis revealed a that persistently elevated levels of inflammatory monocyte signatures and persistent interferon signaling preceeded concerted upregulation of inflammatory cytokines. Interrogation of lower respiratory tract saples revelaed that infected myeliod cells upregulated CXCL10, and elevated levels of CXCL10 in plasma were associated with a high risk of death. Overall, our data suggest a pivotal role for myeloid cell states in severe COVID-19 and may faciliate discovery of new diagnostics and therapeutics.
Project description:We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 234 patients with COVID-19 (n=93), other viral (n=100) or non-viral (n=41) acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils, macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 27-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.981, 0.954 and 0.885, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.
Project description:Adult-onset Still’s disease (AOSD) patients represent a population for which vaccination can induce disease flare1. The COVID-19 pandemic vaccination programs presented these patients and their health care providers with a critical decision. Previously it has been described that AOSD patients can experience disease flare with COVID-19 vaccination but no one has yet reported their immune transcriptional and antibody response. Here we present the transcriptional response and anti-spike antibody profile of a 58-year-old male after vaccination with BNT162b2 who experienced a mild AOSD flare following the second vaccine.
Project description:As coronavirus disease 2019 (COVID-19) and aging are both accompanied by cognitive decline, we hypothesized that COVID-19 might lead to molecular signatures similar to aging. We performed whole-transcriptome analysis of the frontal cortex, a critical area for cognitive function, in individuals with COVID-19, age-matched and sex-matched uninfected controls, and uninfected individuals with intensive care unit/ventilator treatment. Our findings indicate that COVID-19 is associated with molecular signatures of brain aging and emphasize the value of neurological follow-up in recovered individuals.
Project description:Cardiac microthrombi have been variably identified at autopsy of Covid-19 decedents. Little is known about the morphologic and molecular changes associated with cardiac microthrombi and whether predictive biomarkers exist. We sought to determine the prevalence, pathogenesis, and biomarker risk factors of Covid-19-associated cardiac microthrombi. In addition to histology and immunohistochemical analyses, we investigated right verticles from 8 Covid-19 decedents via single nuclei RNA sequencing for cell-type specific transcriptional differences between hearts with and without microthrombi, as well as between Covid-19 decedents and publicly available non-Covid-19 donor controls.
Project description:The clinical course of Coronavirus disease 2019 (COVID-19) displays a wide variability, ranging from completely asymptomatic forms to diseases associated with severe clinical outcomes. To reduce the incidence COVID-19 severe outcomes, innovative molecular biomarkers are needed to improve the stratification of patients at the highest risk of mortality and to better customize therapeutic strategies. MicroRNAs associated with COVID-19 outcomes could allow quantifying the risk of severe outcomes and developing models for predicting outcomes, thus helping to customize the most aggressive therapeutic strategies for each patient. Here, we analyzed the circulating miRNA profiles in a set of 12 hospitalized patients with severe COVID-19, with the aim to identify miRNAs associated with in-hospital mortality.
Project description:Analysis of COVID-19 hospitalized patients, with different kind of symptoms, by human rectal swabs collection and 16S sequencing approach.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes that regulate COVID-19 host susceptibility is a critical next step. Using a translational genomics approach that integrates COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX) and perturbagen signatures, we identify IL10RB as the top key regulator of COVID-19 host susceptibility. In a series of validation steps we show that predicted GReX up-regulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes, and that in vitro IL10RB overexpression is associated with increased viral load and activation of disease-relevant molecular pathways.