Project description:The objective was to analyze the differential expression between the wild strain and the Streptomyces clavuligerus ΔclaR::aac mutant Six experimental conditions were assayed, two strains (Streptomyces clavuligerus ATCC 27064, S. clavuligerus ΔclaR::aac) in three culture times (22.5h, 46.5h and 60 h). Two biological replicates for each condition.
Project description:The objective is to analyze the differential expression between the wild strain and a ccaR-deleted and oppA2::aph mutants 6 biological conditions were used, three strains in two times (exponential and stationary growth phase; Streptomyces clavuligerus ATCC 27064, S. clavuligerus M-bM-^HM-^FccaR and S. clavuligerus oppA2::aph). Four biological replicates were made for each condition
Project description:The objective was to analyze the differential expression between the wild strain and the Streptomyces clavuligerus ΔclaR::aac mutant
Project description:The objective is to analyze the expression level of a Streptomyces clavuligerus oppA2-deleted mutant Experiment type Expression profiling by array
Project description:RNA seq analysis was performed using adpA-deleted and adpA-overexpressed Streptomyces clavuligerus strains to determine its regulatory effect on tunicamycin and other secondary metabolites production
Project description:Interventions: Case series:Nil
Primary outcome(s): intestinal microecological disorders;blood non-coding RNAs and immune status
Study Design: Randomized parallel controlled trial
Project description:To increase production of the important pharmaceutical compounds, both mutagenesis approaches and rational engineering have been extensively applied. Mutagenesis approaches are most popular in industry, but their effects have not yet been studied very well. Here, we used microarrays to compare the transcriptomes of the S. clavuligerus wild type (ATCC 27064) strain and the DS48802 clavulanic acid high-producer strain, which has been obtained by classical strain improvement (mutagenesis). Streptomyces clavuligerus strains were grown in shake flasks. RNA was extracted after 70h and hybridized to microarrays.
Project description:We profiled microRNAs and other small non-coding RNAs in skeletal muscle and plasma samples obtained from gastrointestinal cancer patients and controls and evaluated the association of differentially expressed small non-coding RNAs with the level of muscularity.