Project description:To investigate the rapid adaptation mechanism of Bacillus thuringiensis in an alkaline environment, we have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between normal condition and alkaline condition.
Project description:Human activity is altering the environment at a rapid pace, challenging the adaptive capacities of genetic variation within animal populations. Animals also harbor extensive gut microbiomes, which play diverse roles in host health and fitness and may help expanding host capabilities. The unprecedented scale of human usage of xenobiotics and contamination with environmental toxins describes one challenge against which bacteria with their immense biochemical diversity are particularly suited to offer solutions. To explore the paths leading to bacteria-assisted rapid adaptation, we used Caenorhabditis elegans harboring a defined microbiome, and the antibiotic neomycin as a model toxin, harmful for the worm host and neutralized to different extents by microbiome members. Worms exposed to neomycin showed delayed development and decreased survival but were protected when colonized by neomycin-resistant members of the microbiome. Through a combination of 16S gene sequencing, counting of live bacteria and behavioral assays we identified two distinct mechanisms that facilitated adaptation: gut enrichment for a neomycin-modifying strain driven by altered bacterial competition; and host avoidance behavior, which depended on the stress-activated KGB-1/JNK and enabled preference of neomycin-protective bacteria. The straightforwardness of these mechanisms suggests that bacteria-assisted host adaptation may be more common than currently appreciated, protecting animals from novel stressors. However, gut remodeling may also cause dysbiosis, and additional experiments identified fitness trade-offs including increased susceptibility to infection as well as metabolic remodeling. Extending these results to other toxins suggests yet unaccounted-for microbiome-dependent long-term consequences of toxin exposure.
Project description:Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations, ranging from environmental cleaning of food processing environments, to the phagolysosomal killing of cells engulfed by mammalian phagocytes. Unfortunately, L. monocytogenes can launch an alkaline tolerance response (AlTR), significantly increasing persistence of the pathogen in such environments. This study compared the transcriptome patterns of alkali stressed and non alkali stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which this important pathogen adapts and/or grows during short or long-term alkali stress. Transcription profiles associated with alkali shock (AS) responses were obtained by DNA microarray analysis of mid-exponential cells suspended in pH 9 media for 15, 30 or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained by DNA microarray analysis of cells grown to mid-exponential phase in pH 9 media . Comparison of AS and AA transcription profiles with profiles from control (pH 7.0) cells identified over 2,000 genes that were differentially expressed under alkaline conditions. Rapid (15min) changes in expression included upregulation of genes encoding for multiple metabolic pathways, (including those associated with Na+/H+ antiporters), ABC transporters of functional compatible solutes such as carnitine, motility and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30min and more) responses to AS and adaptation during growth in alkaline conditions (AA), included modest changes in mRNA concentrations, and genes involved in proton export. Keywords: Time course study of gene expression response to alkaline shock and adaptation
Project description:RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called “quasispecies”. Minor genetic variants promote their rapid adaptation allowing for emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assess the risk of cross-species transmission, and safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation.
Project description:Plasmids are extrachromosomal genetic elements commonly found in bacteria. Plasmids are known to fuel bacterial evolution through horizontal gene transfer (HGT), but recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond HGT remains poorly explored. In this study, we investigate the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of various multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveil that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded IS1 elements. Specifically, IS1-mediated gene inactivations expedite the adaptation rate of clinical strains in vitro and foster within-patient adaptation in the gut. We decipher the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings propose that plasmid-mediated IS transposition represents a crucial mechanism for swift bacterial adaptation.
Project description:Alkaline pH triggers an adaptation mechanism in fungi that is mediated by Rim101/PacCp, a zinc finger transcription factor. To identify the genes under its control in Ustilago maydis, we performed microarray analyses, comparing gene expression in a wild type strain vs a rim101/pacC mutant of the fungus. In this study we obtained evidence of the large number of genes regulated mostly directly, but also indirectly (probably through regulation of other transcription factors) by Rim101/PacCp, including proteins involved in a large number of physiological activities of the fungus. Our analyses suggest that the response to alkaline conditions under the control of the Pal/Rim pathway involves changes in the cell wall and plasma membrane through alterations in their lipid, protein, and polysaccharide composition, changes in cell polarity, actin cytoskeleton organization, and budding patterns. Also as expected, adaptation involves regulation by Rim101/PacC of genes involved in the meiotic functions, such as recombination and segregation, and expression of genes involved in ion and nutrient transport, as well as general vacuole functions. The mutant analyzed in this study is described in PMID 15947192
Project description:Alkaline pH triggers an adaptation mechanism in fungi that is mediated by Rim101/PacCp, a zinc finger transcription factor. To identify the genes under its control in Ustilago maydis, we performed microarray analyses, comparing gene expression in a wild type strain vs a rim101/pacC mutant of the fungus. In this study we obtained evidence of the large number of genes regulated mostly directly, but also indirectly (probably through regulation of other transcription factors) by Rim101/PacCp, including proteins involved in a large number of physiological activities of the fungus. Our analyses suggest that the response to alkaline conditions under the control of the Pal/Rim pathway involves changes in the cell wall and plasma membrane through alterations in their lipid, protein, and polysaccharide composition, changes in cell polarity, actin cytoskeleton organization, and budding patterns. Also as expected, adaptation involves regulation by Rim101/PacC of genes involved in the meiotic functions, such as recombination and segregation, and expression of genes involved in ion and nutrient transport, as well as general vacuole functions. The mutant analyzed in this study is described in PMID 15947192 Five different oligonucleotide probes per gene (60 nt in length) per duplicate represented each of the 6,883 genes of the U.maydis genome. Accordingly, the expressed data are equivalent to 10 different assays of the expression of each gene.