Project description:Antimicrobials have been shown to select for changes in biofilm formation and multidrug susceptibility in common human pathogens. We investigated whether common food preservatives selected for these changes in the food pathogen Salmonella enterica serovar Typhimurium. Bacteria were exposed to four food preservatives in either planktonic cultures or biofilms grown on stainless steel beads. Cultures were passaged into fresh media supplemented with the food preservative every 72 hours. Following approximately 1000 generations of continuous preservative exposure, populations were sequenced to determine the single nucleotide polymorphisms that were selected for over evolutionary time.
Project description:The gene expression of Salmonella enterica Typhimurium MB282 residing in the food vacuole (phagosome) of Tetrahymena was analyzed by microarray.
Project description:Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. Besides compromising public health and food safety, sub-clinical salmonellosis is also believed to be a major problem affecting the profitability of the pig industry. Distinct responses to Salmonella infection have been observed in pigs, some recovering faster and shedding lower levels of Salmonella in faeces than others (low shedders, LS versus persistent shedders, PS). This trait variation could indicate the existence of a genetic component to Salmonella shedding and resistance that may be exploited in animal breeding and disease diagnostics. The study aimed to characterize changes in miRNA expression in response to Salmonella infection.
Project description:Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. Besides compromising public health and food safety, sub-clinical salmonellosis is also believed to be a major problem affecting the profitability of the pig industry. Distinct responses to Salmonella infection have been observed in pigs, some recovering faster and shedding lower levels of Salmonella in faeces than others (low shedders, LS versus persistent shedders, PS). This trait variation could indicate the existence of a genetic component to Salmonella shedding and resistance that may be exploited in animal breeding and disease diagnostics. The study aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding.