Project description:Leaf development has been monitored chiefly by following anatomical markers. Analysis of transcriptome dynamics during leaf maturation revealed multiple expression patterns that rise or fall with age or that display age specific peaks. These were used to formulate a digital differentiation index (DDI), based on a set of selected markers with informative expression during leaf ontogeny. The leaf-based DDI reliably predicted the developmental state of leaf samples from diverse sources and was independent of mitotic cell division transcripts or propensity of the specific cell type. When calibrated by informative root markers, the same algorithm accurately diagnosed dissected root samples. We used the DDI to characterize plants with reduced activities of multiple CINCINNATA (CIN)-TCP growth regulators. These plants had giant curled leaves made up of small cells with abnormal shape, low DDI scores and low expression of mitosis markers, depicting the primary role of CIN-TCPs as promoters of differentiation. Delayed activity of several CIN-TCPs resulted in abnormally large but flat leaves with regular cells. The application of DDI has therefore portrayed the CIN-TCPs as heterochronic regulators that permit the development of a flexible and robust leaf form through an ordered and protracted maturation schedule. Experiment Overall Design: Vegetative apices of arabidopsis plants from modified CIN-TCP activity were collected. Experiment Overall Design: 1. Overexpression of an artificial microRNA targeting TCP5, TCP13 and TCP17 Experiment Overall Design: 2. Overexpression of the endogenous microRNA 319b targeting TCP2, TCP3, TCP4, TCP10 and TCP24 Experiment Overall Design: 3. the combination of the two microRNA, knocking down the eight CIN-TCP Experiment Overall Design: 4. Overexpression of TCP4 under the leaf specific BLS promoter
Project description:Mutations in the CINCINNATA gene in Antirrhinum and its orthologues in Arabidopsis cause negative surface curvature in leaves due to excess marginal growth. CIN-like genes code for TCP transcription factors and are expressed in a broad zone of a growing leaf somewhat distal to the proliferation zone. Although a few TCP targets are known, the role of CIN-like TCP genes in regulating leaf curvature has remained unclear. We have compared the global transcription profile of wild type and cincinnata mutant to identify its targets. By combining DNA-protein interaction, chromatin immunoprecipitation and RNA in situ hybridization, we show that CIN maintains surface flatness by regulating signaling or level of major plant hormones. CIN promotes cytokinin signaling directly and GA level indirectly, in accelerating maturity in leaf cells along the tip-to-base direction. In addition, CIN suppresses auxin signaling more at the margin than centre by establishing a margin-to-medial expression gradient of a homologue of the auxin suppressor IAA3. Our results uncover an underlying mechanism in a developing leaf that controls maturity of leaf and its surface curvature. Considering the conservation of CIN-like genes and their function in leaf morphogenesis in multiple plant species, it is likely that such mechanism is evolutionarily conserved.
Project description:Mutations in the CINCINNATA gene in Antirrhinum and its orthologues in Arabidopsis cause negative surface curvature in leaves due to excess marginal growth. CIN-like genes code for TCP transcription factors and are expressed in a broad zone of a growing leaf somewhat distal to the proliferation zone. Although a few TCP targets are known, the role of CIN-like TCP genes in regulating leaf curvature has remained unclear. We have compared the global transcription profile of wild type and cincinnata mutant to identify its targets. By combining DNA-protein interaction, chromatin immunoprecipitation and RNA in situ hybridization, we show that CIN maintains surface flatness by regulating signaling or level of major plant hormones. CIN promotes cytokinin signaling directly and GA level indirectly, in accelerating maturity in leaf cells along the tip-to-base direction. In addition, CIN suppresses auxin signaling more at the margin than centre by establishing a margin-to-medial expression gradient of a homologue of the auxin suppressor IAA3. Our results uncover an underlying mechanism in a developing leaf that controls maturity of leaf and its surface curvature. Considering the conservation of CIN-like genes and their function in leaf morphogenesis in multiple plant species, it is likely that such mechanism is evolutionarily conserved. Two color Experiment, Organism: Arabidopsis thaliana and Antirrhinum. Arrays Used: 1. Agilent Arabidopsis thaliana Gene expression Microarray 22k (AMADID: 013324) 2. Agilent Custom Arabidopsis thaliana 4x44k Gene Expression (AMADID: 015226) 3. Agilent custom Antirrhinum 4x44k Gene expression (AMADID: 016341) designed by Genotypic Technology Private Limited.
Project description:Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly to suppress activity of a leaf margin meristem in Arabidopsis thaliana, and that their absence confers persistent marginal growth of leaves, cotyledons and floral organs. The marginal meristem is activated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, but other margin elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic from an ancestral shoot system from which seed plant leaves evolved.
Project description:TCP transcription factors from the CYC2-class are involved in the development of monosymmetric flowers in all core eudicot species analysed so far. In Antirrhinum majus, the CYC2/TCP transcription factor CYCLOIDEA (CYC) is the molecular key regulator driving the development of flower monosymmetry (Luo D, Carpenter R, Vincent C, Copsey L, Coen E: Origin of floral asymmetry in Antirrhinum. Nature 1996, 383:794-799). In the Brassicaceae Iberis amara, a stronger expression of the CYC2 gene IaTCP1 in the small adaxial petals likely leads to the reduced petal size in comparison to large abaxial petals, with hardly any IaTCP1 expression. This results in the formation of the monosymmetric Iberis flower (Busch A, Zachgo S: Control of corolla monosymmetry in the Brassicaceae Iberis amara. PNAS 2007, 104:16714-16719). In contrast, the orthologous TCP/CYC2 transcription factor TCP1 from Arabidopsis thaliana, which forms equally sized and shaped petal pairs, only shows an early and transient expression in the adaxial area of floral primordia. This implies that monosymmetry in the Brassicaceae evolved through a heterochronic expression shift of the TCP/CYC2 key regulator gene IaTCP1. Transgenic Arabidopsis plants overexpressing IaTCP1 and TCP1 develop smaller petals whereas transgenic plants overexpressing CYC from Antirrhinum majus produce larger flowers. In any case, petal size is affected. To compare the effects of the three CYC2 TCP transcription factors on downstream (regulatory) networks in Arabidopsis thaliana, a microarray analysis was conducted.