Project description:Obtaining adipose tissue samples are paramount to the understanding of human obesity. We have examined the impact of needle-aspirated and surgical biopsy techniques on the study of subcutaneous adipose tissue (scAT) gene expression in both obese and lean subjects. Biopsy sampling methods have a significant impact on data interpretation and revealed that gene expression profiles derived from surgical tissue biopsies better capture the significant changes in molecular pathways associated with obesity. We hypothesize that this is because needle biopsies do not aspirate the fibrotic fraction of scAT; which subsequently results in an under-representation of the inflammatory and metabolic changes that coincide with obesity. This analysis revealed that the biopsy technique influences the gene expression underlying the biological themes commonly discussed in obesity (e.g. inflammation, extracellular matrix, metabolism, etc), and is therefore a caveat to consider when designing microarray experiments. These results have crucial implications for the clinical and physiopathological understanding of human obesity and therapeutic approaches. Keywords: subject and tissue biopsy technique comparison Tissue samples from lean and obese subjects were analyzed: total of 36 hybridizations. The goal was to compare the effect of biopsy sampling methods on global subcutaneous adipose tissue gene expression analyses. The following subject groups were used for the analysis: 9 lean subjects: needle biopsy 9 lean subjects: surgical biopsy 9 obese subjects: needle biopsy 9 obese subjects: surgical biopsy
Project description:Individualized analysis through expression profiling of 20,000 probes in 28 tissue samples evaluated in subcutaneous and omental adipose tissue obtained during surgical intervention in non-obese and obese patients. Patients consisted of men and women of varying body size (lean to severely obese). Samples were collected at the time of operation in the fasting state. Samples consisted of subcutaneous and omental adipose tissue as well as a blood sample from lean and obese men and women removed in the fasting state at the time of surgery.
Project description:Obesity is a heterogeneous conditions comprising obese individuals with metabolic disorders (termed metabolically unhealthy obese; MUO) and obese individuals who are metabolically healthy (termed metabolically healthy obese; MHO). We used microarrays to examine differences in subcutaneous adipose tissue gene expression from lean healthy (LH), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) individuals. Subcutaneous adipose tissue samples from the periumbilical region were obtained under local anesthesia and after an overnight fast. 50-100 mg of adipose tissue was homogenized and total RNA was extracted after homogenisation in TRIzol reagent using a tissue homogenizer.
Project description:Comparison of subcutaneous abdominal adipose tissue before and after biliopancreatic diversion with duodenal switch (BPD/DS), and versus subcutaneous abdominal adipose tissue from lean, healthy subjects undergoing hernia repair surgery
Project description:Affymetrix miRNA 3.0 array profiling of adipocyte-derived exosomes from obese and lean human subjects. We used miRNA arrays to profile exosomes shed from obese and lean human subcutaneous fat that was cultured for 60 minutes.
Project description:Adipose, once considered an inert storage depot, is now known to be an active endocrine tissue involved in total body homeostasis and metabolism, which exerts effects on multiple systems including food intake, immune function, and blood glucose regulation. Adipose tissue depots are known to have unique metabolic and gene expression profiles in vivo and when cultured in vitro. Differences in adipose tissue depot function could be important in determining chronic disease risk. Few comparisons of depot gene expression have been performed in the dog. Utilizing microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs. Subcutaneous and gonadal adipose tissue samples were collected from 9 intact female beagles (4 yr-old; 4 lean controls; 5 obese ad libitum-fed) after 24 wk of ad libitum feeding.
Project description:Animal studies have linked disturbed adipose tissue clock gene rhythms to the pathophysiology of the metabolic syndrome. However, data on molecular clock rhythms in human patients are limited. Therefore, in a standardized real life setting, we compared diurnal gene expression profiles in subcutaneous adipose tissue between obese patients with type 2 diabetes and age-matched healthy lean control subjects, using RNA sequencing. In patients, 1.8% (303 genes) of expressed genes showed significant diurnal rhythms, compared to 8.4% (1421 genes) in healthy controls. In patients, the core clock genes showed reduced amplitude oscillations. Enrichment analysis revealed a loss of rhythm in canonical metabolic pathways including AMPK signaling and cAMP mediated signaling in patients. In conclusion, we provide the first transcriptomics atlas of human adipose tissue diurnal rhythms, and show evidence of decreased diurnal clock and metabolic gene expression rhythms in subcutaneous adipose tissue of obese patients with type 2 diabetes.
Project description:Affymetrix miRNA 3.0 array profiling of adipocyte-derived exosomes from obese and lean human subjects. We used miRNA arrays to profile exosomes shed from obese and lean human subcutaneous fat that was cultured for 60 minutes. Human obese and lean subcutaneous fat were surgically acquired, dissected, and promptly cultured for 60 minutes. We used the culture supernatants for exosome purification and isolation using ExoQuick-TC Precipitation Solution.