Project description:Swine confinement buildings (SCBs) represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, the aim of this study was to develop a method to investigate the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters from two exclusively housed pig types (porkers and gestating sows) and subsequently analyzed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The workflow helps to clarify diversity in bioaerosols from a taxonomic perspective, but also from a functional perspective.
Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults.