Project description:Analysis of gene expression of Staphylococcus sp.OJ82 from fermented seafood in salted environment Total RNA obtained from Staphylococcus sp.OJ82 in 1% and 11% NaCl condition
Project description:Given the recognized nutritional value of fish and shifting consumer lifestyles, processed seafood has become increasingly prevalent, comprising a significant portion of global food production. Although current European Union labeling regulations do not require species declaration for these products, food business operators often voluntarily provide this information on ingredient lists. Next Generation Sequencing (NGS) approaches are currently the most effective methods for verifying the accuracy of species declarations on processed seafood labels. This study examined the species composition of 20 processed seafood products, each labeled as containing a single species, using two DNA metabarcoding markers targeting the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA genes. The combined use of these markers revealed that the majority of the products contained multiple species. Furthermore, two products were found to be mislabeled, as the declared species were not detected. These findings underscore that NGS is a robust technique that could be adopted to support routine food industry activities and official control programs, thereby enhancing the 'From Boat to Plate' strategy and combating fraudulent practices in the complex fisheries supply chain.
Project description:The National Institute of Standards and Technology (NIST) has prepared four seafood reference materials (RMs) for use in food safety and nutrition studies: wild-caught and aquacultured salmon (RM 8256 and RM 8257) and wild-caught and aquacultured shrimp (RM 8258 and RM 8259). These materials were characterized using genetic, metabolomic (1H-NMR, nuclear magnetic resonance and LC-HRMS/MS, liquid chromatography high resolution tandem mass spectrometry), lipidomic and proteomic methods to explore their use as matrix-matched, multi-omic differential materials for method development towards identifying product source and/or as quality control in untargeted omics studies. The results from experimental replicates were reproducible for each reference material and analytical method, with the most abundant features reported. Additionally, differences between the materials could be detected, where wild-caught and aquacultured seafood could be distinguished using untargeted metabolite, lipid and protein analyses. Further processing of the fresh frozen RMs by freeze-drying revealed the freeze-dried seafoods could still be reliably discerned. These results demonstrate the usefulness of these reference materials as tools for omics instrument validation and measurement harmonization in seafood-related studies. Furthermore, their use as differential quality control materials, regardless of preparation method, may also provide a tool for laboratories to demonstrate proficiency at discriminating between products based on source/species.
Project description:Abstract: Our intake of ultra-processed foods has dramatically increased over the past few decades in line with the prevalence of obesity and diabetes, key risk factors for microvascular diseases such as chronic kidney disease (CKD). The extent to which long-term intake of highly processed food influences CKD outcome is unclear. Here, we show in rodent models that a highly processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury. Consequently, a highly processed diet leads to innate immune complement activation and local kidney inflammation via the potent proinflammatory effector molecule complement 5a (C5a). C5a receptor inhibition ameliorated albuminuria. In a mouse model of diabetes, a high resistant starch fiber diet led to a redistribution of the gut commensal consortium, prevented impaired gut barrier function and decreased the severity of kidney injury via suppression of complement. These results provide mechanistic insight into the role of highly processed foods on inflammation and chronic disease risk. One Sentence Summary: Ultra-processed diets promote chronic kidney disease
2020-12-18 | GSE142261 | GEO
Project description:Wet market eDNA metabarcoding
| PRJNA796006 | ENA
Project description:L. monocytogenes CC288-ST330 from processed seafood
Project description:Currently as of 29/05/2019:
https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-looking-aspirin-and-fish-oil-possible-way-preventing-small-growths-forming-bowel-seafood
Previously:
http://cancerhelp.cancerresearchuk.org/trials/a-trial-looking-aspirin-and-fish-oil-possible-way-preventing-small-growths-forming-bowel-seafood