Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:The unicellular, free-living, nonphotosynthetic chlorophycean alga Polytomella parva, closely related to Chlamydomonas reinhardtii and Volvox carteri, contains colorless, starch-storing plastids. The P. parva plastids lack all light-dependent processes but maintain crucial metabolic pathways. The colorless alga also lacks a plastid genome, meaning no transcription or translation should occur inside the organelle. Here, using an algal fraction enriched in plastids as well as publicly available transcriptome data, we provide a proteomic characterization of the P. parva plastid, ultimately identifying several plastid proteins, both by mass spectrometry and bioinformatic analyses. Altogether these results led us to propose a plastid proteome for P. parva, i.e., a set of proteins that participate in carbohydrate metabolism; in the synthesis and degradation of starch, amino acids and lipids; in the biosynthesis of terpenoids and tetrapyrroles; in solute transport and protein translocation; and in redox homeostasis. This is the first detailed plastid proteome from a unicellular, free-living colorless alga.
Project description:Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present proteome maps of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA (mRNA) fragments. Ribosome footprint profiling of genes encoded by nuclear, mitochondrial, and chloroplast DNAs has revealed qualitative and quantitative changes in mRNA transcription and protein translation within each gene during cell division. Comparisons of ribosome footprints from non-dividing and dividing cells allowed the identification of proteins involved in cell proliferation. Given that in vivo experiments on two selected candidate proteins identified a division-phase-specific mitochondrial nucleoid protein and a mitochondrial division protein, these results offer key insights into the comprehensive protein functions that facilitate cell and organelle division.
Project description:Proteome analysis of total proteins extracted from green alga M. hakoo using LC-MS/MS. The proteome of A. thaliana was also analyzed for comparison.
Project description:Cyanidioschyzon merolae is a thermophilic red alga with an optimum growth temperature of 42°C. In this study we investigated the acclimation process of the alga to a colder temperature (25°C). To this aim we performed quantitative proteomic analyses of whole cells as well as solubilized thylakoid protein complexes.
Project description:Lipid profiling was performed on green alga C. zofingiensis grown with and without glucose in the presence of light. Published in, The Plant Cell, Volume 31, Issue 3, March 2019, Pages 579 to 601, https://doi.org/10.1105/tpc.18.00742
Project description:Relatively little is known about the presence and regulation of pathways involved in nutrient acquisition in the brown tide forming alga, Aureococcus anophagefferens. In this study, Long-SAGE (Serial Analysis of Gene Expression) was used to profile the A. anophagefferens transcriptome under nutrient replete (control), and nitrogen (N) and phosphorus (P) deficiency with the goal of understanding how this organism responds at the transcriptional level to varying nutrient conditions. This approach has aided A. anophagefferens genome annotation efforts and identified a suite of genes up-regulated by N and P deficiency, some of which have known roles in nutrient metabolism. Genes up-regulated under N deficiency include an ammonium transporter, an acetamidase/formamidase, and two peptidases. This suggests an ability to utilize reduced N compounds and dissolved organic nitrogen, supporting the hypothesized importance of these N sources in A. anophagefferens bloom formation. There are also a broad suite of P-regulated genes, including an alkaline phosphatase, and two 5’-nucleotidases, suggesting A. anophagefferens may use dissolved organic phosphorus under low phosphate conditions. These N- and P-regulated genes may be important targets for exploring nutrient controls on bloom formation in field populations.
Project description:Metabolism, cell cycle stages, and related transcriptomes in eukaryotic algae change with the diel cycle of light availability. In the unicellular red alga Cyanidioschyzon merolae, the S and M phases occur at night. To examine how diel transcriptomic changes in metabolic pathways are related to the cell cycle and to identify all genes, for which mRNA levels change depending on the cell cycle, we examined diel transcriptomic changes in C. merolae. In addition, we compared transcriptomic changes between the wild type and transgenic lines, in which the cell cycle was uncoupled from the diel cycle by the depletion of either cyclin-dependent kinase A (CDKA) or retinoblastoma-related (RBR) protein. Of 4,775 nucleus-encoded genes, the mRNA levels of 1,979 genes exhibited diel transcriptomic changes in the wild type. Of these, the periodic expression patterns of 454 genes were abolished in the transgenic lines, suggesting that the expression of these genes is dependent on cell cycle progression. The periodic expression patterns of most metabolic genes, except those involved in starch degradation and de novo dNTP synthesis, were not affected in the transgenic lines, indicating that the cell cycle and transcriptomic changes in most metabolic pathways are independent of the diel cycle. Approximately 40% of the cell–cycle–dependent genes were of unknown function, and approximately 19% of these genes of unknown function are shared with the green alga Chlamydomonas reinhardtii. The dataset presented in this study will facilitate further studies on the cell cycle and its relationship with metabolism in eukaryotic algae.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).