Project description:In order to investigate the chicken SLCO1B3 gene functin on the liver metabolism, we used the Yimeng blue eggshell and brown eggshell chickens as the chicken liver SLCO1B3 gene knock-down animal to do the proteomic analysis.
Project description:Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome changeover during sporulation, a time-lapse proteomic analysis was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules. Modules brown and green are upregulated during sporulation and are annotated as associated with sporulation. Module blue, which is negatively correlated with modules brown and green, comprised ribosomal and metabolic proteins, and module yellow is co-expressed with module blue and modules brown & green. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green. We speculate that they may also play roles during sporulation. Finally, amounts of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation. While we speculate on their possible role in guiding or helping assembly of other coat proteins, after which they can be disposed of, such a hypothesis remains to be experimentally addressed.
Project description:White leghorn layers were infected with Salmonella Enteritidis. The cecum were collected at 7 days post infection for total RNA isolation. The significantly expressed microRNAs between infected and non-infected chickens were identified through Solexa sequencing technology.
Project description:In the current study, we expanded our previous work to identify miRNAs implicated in the myogenesis regulation through the comparison of miRNAs transcriptome in skeletal muscle tissues between broilers and layers. To address that, we firstly performed Solexa deep sequencing to profile miRNAs expressed in chicken skeletal muscle tissues. Sequence tags analyses not only enable us to report a group of highly abundant known miRNAs expressed in skeletal muscles but most importantly to identify novel putative chicken miRNAs from skeletal muscle tissue. Further miRNA transcriptome comparison and real-time RT-PCR validation experiments revealed seveal differentially expressed miRNAs between broilers and layers. Examination of miRNA transcriptome in skeletal muscle of two kinds of chickens
Project description:Transcriptome profiling by Nimblegen array of Physcomitrella patens Reute gametophores, gametophores with gametangia, green sporophytes and brown sporophytes.
Project description:Domestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent “obese” chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other.
Project description:Our study investigated the differences of uterine transcriptome in laying hen holding a high or low breaking strength shell. The eggshell calcification periods are divided into three periods, namely initiation, growth and termination periods respectively. The large differences in the transcriptome proved that the initiation period of calcification determine eggshell strength.
Project description:Domestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent “obese” chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other. In this study, we used affymetrix microarray to profile global gene expression of three distinct genetic lines of chickens to identify functional pathways associated with leanness of domestic chickens.
Project description:Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. The brown algae are also important because they are one of only a very small number of eukaryotic lineages that have evolved complex multicellularity. This work used whole genome tiling array approach to generate a comprehensive transcriptome map of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for the brown algae. Keywords: high-resolution tiling array, brown algae, ectocarpus