Project description:Delivery of colostrum within the first several hours after birth is vital for establishing successful passive immunity in neonatal dairy calves. However, it is unclear whether the difference in colostrum feeding strategy can affect the development of the calf gastrointestinal tract. The aim of this study was to evaluate the effect of colostrum feeding time within the first 12 h after birth on the colonic mucosal immune system in neonatal calves using a genome wide transcriptome analysis.RNA sequencing based transcriptome analysis of colon tissues collected from twenty-seven male Holstein calves which were randomly assigned to one of three colostrum feeding strategies (immediately after birth (TRT0); 6 h after birth (TRT6); 12 h after birth (TRT12)) and were euthanized at 51 h of age detected 15935 ± 210, 15332 ± 415, and 15539 ± 440 expressed genes in groups, respectively. The core transcriptome of the colon in dairy calves included 12,678 genes, with enriched “cellular process” and “metabolic process” as the top three biological functions. Expression of 802 immune related genes were detected in the colon tissue. Principal component analysis of the transcriptomes did not display a clear separation by colostrum feeding strategy, and differential abundance analyses showed no significant difference in the expression of immune related genes among the treatments.Transcriptome analysis indicates that the development of the colonic mucosal immune system in neonatal calves may be independent of the timing of initial colostrum meal within 12 h after birth.
Project description:In order to test the development of gastrointestinal tract (GIT) in pre-weaned cavles, the GIT tissues were collected from day 0, day 7, day 21 and day 42 calves. RNA-seq was used to measure the transcriptome profiles. The RNA-seq analysis revealed the fast development of small intestine and rumen tissue during the first week after birth.
Project description:The aim of the overall study was to investigate the development of immune competence in artificially reared dairy calves and in two breeds of naturally suckled beef calves over the first 168h of life. Dairy calves were fed 5% total body weight of colostrum, with beef calves monitored to ensure natural ingestion of colostrum. Blood samples were taken from all calves at 24h 48h 72h and 168h, and analysed for alterations to immunes genes.
Project description:Calves are highly susceptible to gastrointestinal infection with Cryptosporidium parvum (C. parvum), which can result in watery diarrhea and eventually death or impaired development. With little to no effective therapeutics, understanding the host’s microbiota and pathogen interaction at the mucosal immune system has been critical to identify and test novel control strategies. We used an experimental model of C. parvum challenge in neonatal calves to describe the clinical signs and mucosal innate immune and microbiota hallmarks in the ileum and colon during cryptosporidiosis and investigated the impact of supplemental colostrum feeding on C. parvum infection. The C. parvum challenged calves experienced clinical signs including pyrexia and diarrhea 5 days post challenge. These calves showed ulcerative neutrophil ileitis with a proteomic signature driven by inflammatory effectors, including reactive oxygen species and myeloperoxidases. Colitis was also noticed with an aggravated mucin barrier depletion and lack of full filled mucin granule in goblet cells. The C. parvum challenged calves also displayed a pronounced dysbiosis with a high prevalence of Clostridium species (spp.) and number of exotoxins, adherence factors, and secretion systems related to Clostridium spp. and other enteropathogens, including Campylobacter spp., Escherichia sp., Shigella spp., and Listeria spp. Daily supplementation with a high-quality bovine colostrum product mitigated some of the clinical signs and modulated the gut immune response and concomitant microbiota to a pattern more similar to that of healthy unchallenged calves.
Project description:The aim of this study was to measure the impact of contrasting feeding regimes in the first 12 wk of life, known to impact age at puberty on the molecular control of the testes in bull calves. Holstein bull calves were designated to high (HI; n=15) or moderate (MOD; n=15) dietary groups, with diets designed to provoke growth rates of 1.0 and 0.5 kg/day, respectively. At 12 wk of age, all calves were euthanized, and testes parenchyma harvested. RNA was extracted from the testes and used for miRNAseq. Bioinformatic analysis identified 7 miRNA as differentially expressed between the HI and MOD treatment groups, with target mRNA genes invovled in pathways related to AMPK and IGF-1 signaling.
Project description:Dampness heat diarrhea (DHD) is the leading cause in calves with diarrhea in traditional Chinese medicine (TCM). However, the methods for detecting DHD diarrhea remain subjective or infective. To address this issue, the calves with dampness heat diarrhea were collected and the plasma proteomic was analyzed using data-independent acquisition (DIA)-mass spectrometry- based proteomics. The analysis revealed a total of 52 differentially expressed proteins that were uniquely altered in the DHD calves’ plasma, compared to the control. Bioinformatics analysis showed that these altered proteins were involved in a wide range of biological processes, such as intestinal immune network for IgA production, purine metabolism and PI3K signaling pathway, which implying their potential roles in DHD.