Project description:To reannotate the genome of Zymoseptoria tritici IPO323, RNA-Seq and Iso-Seq runs were performed on different growth media to provide new source of evidence for gene model predictors. New gene models were predicted and combined with existing annotation releases. Finally, selection of best gene models was done by congruence with evidence data like transcript assembled from RNA-Seq, Iso-Seq cDNA and fungal proteins from databases.
Project description:We analyzed ChIP-seq profiles for H3K4me3, H3K27ac, BRG1, ARID1A, PPAR? and JMJD1A and FAIRE-seq open chromatin profile in immortalized brown adipocytes (iBATs) treated with 1 ?M isporoterenol (ISO) or vehicle for 2 hr ChIP-seq profiles for H3K4me3, H3K27ac, BRG1, ARID1A, PPAR? and JMJD1A and FAIRE-seq open chromatin profile in iBATs at Day 8 of differentiation treated with 1 ?M isporoterenol (ISO) or vehicle for 2 hr
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1) and performed a detailed survey of gene expression across different tissues. RNA-seq data of 7 tissue types from the reference female Texel and skin tissue from a Gansu alpine fine wool sheep were sequenced. Here is the part of the RNA-seq data sequenced in BGI, including 7 tissue types from the reference female Texel and skin type from a Gansu alpine fine wool sheep.
Project description:We have completed the high quality reference genome for domestic sheep (Oar v3.1). Early-stage Illumina GA sequence platform sequenced less reads in high GC content regions than in other regions. To read through higher GC content regions, we generated 2 Gb MeDIP-seq data for filling gaps in sheep reference genome assembly.
Project description:To investigate the differentiative fate of human PLCs following transplantation into fetal sheep and engraftment in various tissues/organs, we performed gene expression profiling analysis using data obtained from RNA-seq of human PLCs prior to in utero transplantation and of each engrafted fetal sheep tissue after filtering to remove any cross-reactivity with orthologous sheep transcripts
Project description:<div>Olive (Olea europaea) has a long history of medicinal and nutritional values own to it rich in polyphenol and fatty acids (FAs) in fruits. In order to better understand the biosynthesis important of these metabolites, we generated comprehensive Iso-Seq full-length and illumina RNA-seq transcriptome, and targeted metabolomics dataset of different olive fruits maturity. The targeted metabolomics by using both GC/MS and LC/MS were totally quantified 35 FAs and 13 polyphenols. Iso-Seq library was constructed and sequenced by PacBio Sequel System, and a total of 5,891,652 (10.55 G) with an average length of 1,791 subreads were obtained. 492,350 circular consensus sequences (CCSs) were formed after merging and error correction through subread comparison. Of the 492,350 CCSs, 399,263 were found to be full-length non chimera (FLNC) reads, and 187,517 consensus reads were finally obtained by using clustering algorithm of Iterative clustering for error (IEC). These multiomics data provide a foundation to elucidate the mechanisms regulating biosynthesis of polyphenol and FAs during the maturation of olive fruits.</div><div><br></div><div><div><b>GC-MS</b> protocols and data are reported in the current study <b>MTBLS855</b>.</div><div><br></div><div><span _ngcontent-jcp-c3="" class="ng-star-inserted"><b>Polyphenols UPLC-MS</b></span> protocols and data associated to this study are reported in <b><a href="http://www.ebi.ac.uk/metabolights/editor/study/MTBLS814">MTBLS814</a></b>.</div><div><br></div><div><b>Tyrosol only UPLC-MS</b> <span _ngcontent-iov-c3="" class="ng-star-inserted">protocols and data associated to this study are reported in <b><a href="http://www.ebi.ac.uk/metabolights/editor/study/MTBLS814"><a href="https://www.ebi.ac.uk/metabolights/MTBLS1127">MTBLS1127</a>.</a></b></span></div></div>
Project description:<div>Olive (<i>Olea europaea</i>) has a long history of medicinal and nutritional values own to it rich in polyphenol and fatty acids (FAs) in fruits. In order to better understand the biosynthesis important of these metabolites, we generated comprehensive Iso-Seq full-length and illumina RNA-seq transcriptome, and targeted metabolomics dataset of different olive fruits maturity. The targeted metabolomics by using both GC/MS and LC/MS were totally quantified 35 FAs and 13 polyphenols. Iso-Seq library was constructed and sequenced by PacBio Sequel System, and a total of 5,891,652 (10.55 G) with an average length of 1,791 subreads were obtained. 492,350 circular consensus sequences (CCSs) were formed after merging and error correction through subread comparison. Of the 492,350 CCSs, 399,263 were found to be full-length non chimera (FLNC) reads, and 187,517 consensus reads were finally obtained by using clustering algorithm of Iterative clustering for error (IEC). These multiomics data provide a foundation to elucidate the mechanisms regulating biosynthesis of polyphenol and FAs during the maturation of olive fruits.</div><div><b><br></b></div><div><b>Polyphenols UPLC-MS</b> protocols and data are reported in the current study <b>MTBLS814</b>.</div><div><br></div><div><b>GC-MS</b> protocols and data associated to this study are reported in <b><a href="https://www.ebi.ac.uk/metabolights/MTBLS855">MTBLS855</a></b>.</div><div><br></div><div><span _ngcontent-iov-c3="" class="ng-star-inserted"><b>Tyrosol only UPLC-MS</b> <span _ngcontent-iov-c3="" class="ng-star-inserted">protocols and data associated to this study are reported in <b><a href="https://www.ebi.ac.uk/metabolights/MTBLS1127">MTBLS1127</a>.</b></span></span></div><div><br></div><div><br></div>