Project description:Gene expression profiles were generated from 41 consecutive surgically resected fresh frozen malignant peritoneal mesothelioma patient tumor samples to identify molecular prognostic factors. Patient tumor samples hybridized against the common reference (complementary DNA generated from human universal RNA), 41 tumor samples.
Project description:Since loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice. In vitro, Pak2 deletion decreased malignant mesothelioma cell viability, migration, clonogenicity, and spheroid formation. RNA-seq analysis demonstrated downregulated expression of Hedgehog and Wnt pathway genes in NC;Pak2-/- mesothelioma cells versus NC;Pak2+/+ mesothelioma cells. Targeting of the Hedgehog signaling component Gli1 or its target gene Myc inhibited cell viability and spheroid formation in NC;P+/+ mesothelioma cells. Kinome profiling uncovered kinase changes indicative of EMT in NC;Pak2-/- mesothelioma cells, suggesting that Pak2-deficient malignant mesotheliomas can adapt by reprogramming their kinome in the absence of Pak activity. The identification of such compensatory pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs.
Project description:Desmoplastic malignant mesothelioma is a rare tumor. Due to the rarity, development of new treatment for desmoplastic malignant mesothelioma is difficult. To develop new treatment strategy using existing anti-cancer drugs, kinase activity profiling has not been thoroughly studied. We used PamChip array to identify the peptide profiles of desmoplastic malignant mesothelioma between the patient-derived cell line and the tumor tissue.
Project description:Desmoplastic malignant mesothelioma is a rare tumor. Due to the rarity, genomic profile of desmoplastic malignant mesothelioma is not unveiled. To elucidate genomic profile of desmoplastic malignant mesothelioma, we used illumina infinium omini exomeexpress in an established patient-derived cell line of desmoplastic malignant mesothelioma.