Project description:References:
1. Xiaomei Zhu, Lan Yin, Leroy Hood, David Galas and Ping Ao, Efficiency, Robustness and Stochasticity of Gene Regulatory networks in Systems biology: Lambda switch as a working example, 2006.
2. Adam Arkin, John Ross and Harley H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells, 1998, Genetics, 149: 1633-1648.
3. GenBank sequence: NC_001416 is the whole genome sequence of phage lambda.
Project description:Evodiamine (Evo), a kind of alkaloid mostly extracted from Tetradium ruticarpum, which has many pharmacological functions, such as antidiarrheal, antiemetic, and antiulcer effects. In this study, the effects of Evo were investigated in DSS-induced ulcerative colitis (UC) mice and C57BL/6-ApcMinC/Gpt mice with colorectal cancer (CRC). The results showed Evo not only sup-pressed the weight loss and the shorthen of colon, decreased disease activity index (DAI) and ameliorated the pathological alteration of colon in UC mice, but also inhibited the numbers and sizes of colonic tumor of ApcMinC/Gpt mice. Meanwhiles, Evo regulated nuclear factor-kappa B (NF-κB) related signal pathways to mediate various cytokines such as interleukins (Ils), tumor necrosis factor-α (TNF-α) to achieve anti-inflammatory and anti-tumor effects. In SW480 and Caco cells, Evo reduced the cell viabilities, promoted the mitochondrial membrane potential (MMP) and caused the over-accumulation of intracellular reactive oxygen species (ROS). Theoretical evi-dences indicated Evo binding NF-κB may be useful to contain ordered domain (α helix) in NF-κB, which can induce NF-κB to perform its function. Our results provide experimental and theoretical evidence that Evo might be promising and effective treatments in clinics for UC and CRC.
Project description:Lambda interferons IFNL1-3 mediate antiviral immunity by inducing interferon sensitive genes (ISGs) in epithelial tissues. Contrarily, a variant creating the functional gene IFNL4 is associated with impaired clearance of hepatitis C virus (HCV) despite of higher liver expression of ISGs in untreated HCV patients. We aimed to explore IFNL4 signaling mechanism by comparing expression profiles from human hepatic cell line clones with genetic modifications influencing the ISG signaling pathway (IFNLR1/IL10R2 knockouts, IFNL4/IFNL3 expression stimulation by transfection).
Project description:The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had devastating impacts on our global society. Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Therefore, antiviral interventions that are resistant to further virus evolution may be needed. Here, we show IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1529 (Omicron) variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-λ2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in both the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.
Project description:Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-αβ receptor (Ifnar1-/- Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions, independent of a direct effect on viral load. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity, and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils prevented the development of severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection, and suggest potential applications for IFN-λ in treating viral skin infections.
Project description:Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-αβ receptor (Ifnar1-/- Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions, independent of a direct effect on viral load. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity, and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils prevented the development of severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection, and suggest potential applications for IFN-λ in treating viral skin infections.