Project description:We developped a new oligo microarray platform to analyse flax transcriptome. Here, we validated this microarray on several tissues of flax, at different developmental stages.
Project description:We developped a new oligo microarray platform to analyse flax transcriptome. Here, we validated this microarray on several tissues of flax, at different developmental stages. 30 chips study using total RNA from 9 different tissue samples of Flax (Leaf sample at green capsule stage, stem inner tissue at vegetavie stage, stem outter tissue at vegetative stage, stem inner tissue at green capsule stage, stem outter tissue at green capsule stage, roots, embryos of 10, 20 and 40 days after flowering) for an overall survey of microarry accuracy and total RNA from 6 stem tissue at green capsule stage (3 of the cultivar 'Belinka' and 3 of the cultivar 'Drakkar') for an analysis of biological replicates reproducibility.
Project description:To investigate changes in genome methylation in flax seedlings under drought stress, we selected a drought-tolerant flax variety (Z141) and a drought-sensitive flax variety (NY-17) We then performed genome methylation analysis using data obtained from Z141 and NY-17 leaf tissue BS-seq at four different treatments (DS, RW, RD and CK).
Project description:Performances of flax gene expression analyses were compared in two categories of Nimblegen microarrays (short 25-mers oligonucleotides and long 60-mers oligonucleotides) Results obtained in this study are described in Intra-platform comparison of flax (Linum usitatissimum L.) high-density Nimblegen DNA microarrays submitted to Journal of Computational Biology We compared two categories of flax target probes: short (25-mers) oligonucleotides and long (60-mers) oligonucleotides in identical conditions of target production, design, labelling, hybridization, image analyses, and data filtering. This comparison was realized with two different flax samples and each RNA sample was used for the two categories of arrays. Experiments were realized in order to discriminate specific gene expression profiles of two different flax tissues (outer and inner stem tissues).
Project description:Proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 non-redundant total proteins. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues.
Project description:Whole-genome bisulfite sequencing (WGBS) was employed for identification of differential DNA methylation profiles among control and heat-stressed seedlings of a fibre flax (Linum usitatissimum L.) var., JRF-2. It was identified as a tolerant variety of heat stress-induced oxidative damage. High-quality genomic DNA from four samples comprised 3-week-old control and heat-stressed (40±2°C) seedlings, with or without treated with 5-Azacytidine (hypomethylating agent). High-quality and filtered paired-end Illumina reads were aligned to the flax reference genome, assembled in chromosomes, using bwa-meth tool, followed by methylation loci (5-mC) calling using the MethylDackel software. Differentially methylated regions (DMRs) between the control and other samples were identified using the methylKit and annotated using genomation package for their precedence in the promoter/exon/intron/intergenic regions. The DMRs comprised both hyper- and hypomethylated loci, but the latter found dominated due to heat stress in flax seedlings. The WGBS in flax for heat stress will provide a platform to identify epigenetic loci responsible for heat-stress adaptation in flax.
Project description:Performances of flax gene expression analyses were compared in two categories of Nimblegen microarrays (short 25-mers oligonucleotides and long 60-mers oligonucleotides) Results obtained in this study are described in Intra-platform comparison of flax (Linum usitatissimum L.) high-density Nimblegen DNA microarrays submitted to Journal of Computational Biology
Project description:We used our previously described gene expression platform (Fenart et al., 2010) to assess gene expression along the stem of flax, both in inner and outer tissues. 32 chips study using total RNA from Internal and external part of Flax stem, sampled on whole stem or in different parts of the stem.
Project description:Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen V. cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied. Here, we show that ProQ interacts with hundreds of transcripts in V. cholerae, including the highly abundant FlaX small RNA (sRNA). Global analyses of RNA duplex formation using RIL-Seq (RNA interaction by ligation and sequencing) revealed a vast network of ProQ-assisted interactions and identified a role for FlaX in motility regulation. Specifically, FlaX base-pairs with multiple sites on the flaB flagellin mRNA, preventing 30S ribosome binding and translation initiation. V. cholerae cells lacking flaX display impaired motility gene expression, altered flagella composition, and reduced swimming in liquid environments. Our results provide a global view on ProQ-mediated RNA duplex formation and pinpoint the mechanistic and phenotypic consequences associated with ProQ-associated sRNAs in V. cholerae.