Project description:Resident human lamina propria immune cells serve as powerful effectors in host defense. Molecular events associated with the initiation of an intestinal inflammatory response in these cells are largely unknown. Here, we aimed to characterize phenotypic and functional changes induced in these cells at the onset of intestinal inflammation using a human intestinal organ culture model. In this model, healthy human colonic mucosa was depleted of epithelial cells by EDTA treatment. Following loss of the epithelial layer, expression of the inflammatory mediators IL-1β, IL-6, IL-8, IL-23p19, TNF-α, CXCL2 and the surface receptors CD14, TLR2, CD86, CD54 was rapidly induced in resident lamina propria cells in situ as determined by qRT-PCR and immunohistology. Gene microarray analysis of lamina propria cells obtained by laser-capture microdissection provided an overview of global changes in gene expression occurring during the initiation of an intestinal inflammatory response in these cells. Bioinformatic analysis gave insight into signalling pathways mediating this inflammatory response. Furthermore, comparison with published microarray datasets of inflamed mucosa in vivo (ulcerative colitis) revealed a significant overlap of differentially regulated genes underlining the in vivo relevance of the organ culture model. The organ culture model characterized may be useful to study molecular mechanisms underlying the initiation of an intestinal inflammatory response in normal mucosa as well as potential alterations of this response in inflammatory bowel disease. Gut specimens were derived from individuals undergoing resection for localized colon cancer. Microscopically normal colonic mucosa was dissected from the surgical specimen near the resection margin and immediately subjected to the experimental procedures. After extensive washing the mucus layer was removed by dithiothreitol (DTT) treatment. Subsequently, punches of defined surface area were prepared and denuded of epithelial cells by exposure to EDTA. Samples were collected prior to culturing and washing (control, t = 0 h, total mucosa, TM) as well as after loss of the epithelial layer (t = 5 h, mucosa after loss of epithelial layer, LEL-M) and snap frozen in liquid nitrogen. Lamina Propria (LP) was subsequently isolated via Laser Capture Microdissection (LMD) followed by RNA isolation. Microarray analysis of TM-LP (control) and LEL-LP samples was performed using the WG-DASL Human HT_12 V4 Expression BeadChip Assay from Illumina employing a minimum of 200 ng total RNA per sample. Four replicates from individual experiments were measured for each time point.
Project description:Leber2015 - Mucosal immunity and gut
microbiome interaction during C. difficile infection
This model is described in the article:
Systems Modeling of
Interactions between Mucosal Immunity and the Gut Microbiome
during Clostridium difficile Infection.
Leber A, Viladomiu M, Hontecillas R,
Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera
J.
PLoS ONE 2015; 10(7): e0134849
Abstract:
Clostridium difficile infections are associated with the use
of broad-spectrum antibiotics and result in an exuberant
inflammatory response, leading to nosocomial diarrhea, colitis
and even death. To better understand the dynamics of mucosal
immunity during C. difficile infection from initiation through
expansion to resolution, we built a computational model of the
mucosal immune response to the bacterium. The model was
calibrated using data from a mouse model of C. difficile
infection. The model demonstrates a crucial role of T helper 17
(Th17) effector responses in the colonic lamina propria and
luminal commensal bacteria populations in the clearance of C.
difficile and colonic pathology, whereas regulatory T (Treg)
cells responses are associated with the recovery phase. In
addition, the production of anti-microbial peptides by inflamed
epithelial cells and activated neutrophils in response to C.
difficile infection inhibit the re-growth of beneficial
commensal bacterial species. Computational simulations suggest
that the removal of neutrophil and epithelial cell derived
anti-microbial inhibitions, separately and together, on
commensal bacterial regrowth promote recovery and minimize
colonic inflammatory pathology. Simulation results predict a
decrease in colonic inflammatory markers, such as neutrophilic
influx and Th17 cells in the colonic lamina propria, and length
of infection with accelerated commensal bacteria re-growth
through altered anti-microbial inhibition. Computational
modeling provides novel insights on the therapeutic value of
repopulating the colonic microbiome and inducing regulatory
mucosal immune responses during C. difficile infection. Thus,
modeling mucosal immunity-gut microbiota interactions has the
potential to guide the development of targeted fecal
transplantation therapies in the context of precision medicine
interventions.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000583.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Resident human lamina propria immune cells serve as powerful effectors in host defense. Molecular events associated with the initiation of an intestinal inflammatory response in these cells are largely unknown. Here, we aimed to characterize phenotypic and functional changes induced in these cells at the onset of intestinal inflammation using a human intestinal organ culture model. In this model, healthy human colonic mucosa was depleted of epithelial cells by EDTA treatment. Following loss of the epithelial layer, expression of the inflammatory mediators IL-1β, IL-6, IL-8, IL-23p19, TNF-α, CXCL2 and the surface receptors CD14, TLR2, CD86, CD54 was rapidly induced in resident lamina propria cells in situ as determined by qRT-PCR and immunohistology. Gene microarray analysis of lamina propria cells obtained by laser-capture microdissection provided an overview of global changes in gene expression occurring during the initiation of an intestinal inflammatory response in these cells. Bioinformatic analysis gave insight into signalling pathways mediating this inflammatory response. Furthermore, comparison with published microarray datasets of inflamed mucosa in vivo (ulcerative colitis) revealed a significant overlap of differentially regulated genes underlining the in vivo relevance of the organ culture model. The organ culture model characterized may be useful to study molecular mechanisms underlying the initiation of an intestinal inflammatory response in normal mucosa as well as potential alterations of this response in inflammatory bowel disease.
Project description:The intestinal immune system must elicit robust immunity against harmful pathogens but restrain immune responses directed against commensal microbes and dietary antigens. The mechanisms that maintain this dichotomy are poorly understood. Here we describe a population of CD11b+F4/80+CD11câ?? macrophages in the lamina propria (LP) that express several anti-inflammatory molecules including interleukin 10 (IL-10), but little or no pro-inflammatory cytokines, even upon stimulation with Toll-like receptor (TLR) ligands. These macrophages induced, in a manner dependent on IL-10, retinoic acid and exogenous transforming growth factor-β, differentiation of FoxP3+ regulatory T cells. In contrast, LP CD11b+ dendritic cells elicited IL-17 production. This IL-17 production was suppressed by LP macrophages, indicating that a dynamic interplay between these subsets may influence the balance between immune activation and tolerance. Splenic or small intestine lamina propria CD11b+11c- cells were isolated for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the unique genetic profile of small intestine lamina propria CD11b+11c- cells. Experiment Overall Design: 4 samples analyzed, 2 spleen and 2 intestine
Project description:Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation of the gastrointestinal tract. Despite decades of research, the etiology of CD is poorly understood and is characterized by dysregulated immune activation that progressively destroys the gastrointestinal tissue. At the center of the pathology is the intestinal mucosa, where the epithelium and the lamina propria are main cellular compartments. While the epithelium contains predominantly epithelial cells, the lamina propria is enriched in immune cells and contains supporting stroma. Thus, the cells constituting these compartments can be classified as epithelial cells, immune cells and stromal cells. Gaining insight into how these cell types interact with each other is important to further our understanding of CD pathogenesis. Here, using isobaric labeling-based quantitative proteomics, we perform an exploratory study to analyze in-depth proteome changes in epithelial cells, immune cells and stromal cells purified by cell sorting from the intestinal mucosa of CD patients and controls. Our workflow preserving the link between the different cell types in individuals opens the possibility to explore cellular crosstalk and to further refine data on cell-cell interactions in the development of CD.
Project description:This SuperSeries is composed of the following subset Series: GSE22127: Expression profiling of small intestine lamina propria dendritic cells GSE22128: Expression profiling of splenic dendritic cells Dendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) and compared it to splenic DCs (CD11c+ DC), from mice. We sought to determine the unique genetic profile of small intestine lamina propria CD11c+ cells compared to splenic CD11c+ cells. We performed a meta-analysis using the expression profiles of Intestinal lamina propria CD11c+ CD11b+ DCs (GSM550122), Intestinal lamina propria CD11c+ CD11b- DCs (GSM550121) and Splenic CD11c+ DCs (GSM550126). This study combined and re-normalized the microarray data from GSE22127 and GSE22128 studies. Refer to individual Series for additional details
Project description:We describe the transcriptional changes occurring in lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC) upon Trichuris suis ova (TSO) treatment in a rabbit model of DSS colitis
Project description:Age-dependent comparison of transcriptional signature of lamina propria anti-inflammatory macrophages of Il10rb-/- (KO) and Il10rb+/- (het) mice