Project description:Functional characterization of AtWRKY72 using Arabidopsis T-DNA insertion lines showed that this gene is important for basal defense to root-knot nematode (RKN) and Hyaloperonospora parasitica arabidopsis (Hpa), but not several tested R gene-mediated defenses.To profile transcriptional reprogramming associated with AtWRKY72-dependent basal defense we used Affymetrix ATH1 GeneChips representing ~24,000 Arabidopsis genes. Three independent biological replicates were performed with Col-0, wrky72-1 and wrky72-2 plants at 96 hpt with HpaNoco2 or mock treatment. Using a false discovery rate of less than 0.05 we identified for each of these three lines genes that showed significant transcriptional changes in response to HpaNoco2 compared to the mock-treated controls. Identification of downstream targets of WRKY72 in Arabidopsis by this microarray suggests that WRKY72 uses a unique signaling pathway that involves AP2/ERF TFs independent of the ethylene signaling pathway. We intended to identify Arabidopsis genes that are regulated in WRKY72-dependent manner in response to Hyaloperonospora parasitica arabidopsis (Hpa) at 96 hpt. For this, we used Col-0 and two wrky72 mutant lines and compared the differentially expressed genes with the hypothesis ‘genes that are specifically regulated in Col-0 but not in wrky72 mutants are WRKY72-dependent genes’.
Project description:Functional characterization of AtWRKY72 using Arabidopsis T-DNA insertion lines showed that this gene is important for basal defense to root-knot nematode (RKN) and Hyaloperonospora parasitica arabidopsis (Hpa), but not several tested R gene-mediated defenses.To profile transcriptional reprogramming associated with AtWRKY72-dependent basal defense we used Affymetrix ATH1 GeneChips representing ~24,000 Arabidopsis genes. Three independent biological replicates were performed with Col-0, wrky72-1 and wrky72-2 plants at 96 hpt with HpaNoco2 or mock treatment. Using a false discovery rate of less than 0.05 we identified for each of these three lines genes that showed significant transcriptional changes in response to HpaNoco2 compared to the mock-treated controls. Identification of downstream targets of WRKY72 in Arabidopsis by this microarray suggests that WRKY72 uses a unique signaling pathway that involves AP2/ERF TFs independent of the ethylene signaling pathway.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and pskr1-5 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in map65-3 and ugt76b1 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa)
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and clv mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.
Project description:Global transcript profiles of different Arabidopsis thaliana genotypes were examined at 0h, 12h, 24h or 48h post infection with one of three different isolates (races) of the oomycete pathogen Hyaloperonospora parasitica (Hp). The three different isolates of Hp were used for this study, were HpEmoy2, HpHiks1 and HpEmco5 (see Eulgem et al., 2004, Plant Physiol. 135: 1129-1144 for more information). Experimental parameters varied in this study were Arabidopsis genotype, Hp isolate and time after infection.
Project description:Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to particular physiological characteristics, no treatments against diseases caused by oomycetes are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. The present project is focused on the molecular mechanisms that underlie the compatible plant-oomycete interaction and plant disease. The laboratory developed a novel interaction system involving the model plant, Arabidopsis thaliana, and Phytophthora parasitica, a soil-borne pathogen infecting a wide host range, thus representing the majority of Phytophthora species. A characteristic feature of the compatible Arabidopsis/P. parasitica interaction is an extended biotrophic phase, before infection becomes necrotrophic. Because the initial biotrophic phase is extremely short on natural (e.g. solanaceous) hosts, the Arabidopsis system provides the opportunity to analyze, for both interaction partners, the molecular events that determine the initiation of infection and the switch to necrotrophy. The present project aims at analyzing the compatible interaction between A. thaliana roots and P. parasitica. The Affymetrix A. thaliana full genome chip will be used to characterize modulations of the transcriptome occurring over a period of 24h from the onset of plant root infection to the beginning of necrotrophy. Parallel to this study, a custom-designed P. parasitica biochip will enable analyzing of P. parasitica gene expression during the same stages.
Project description:Rare sugars are monosaccharides that are rarely present in nature. To reveal a effect of D-tagatose in plant and the responses to the D-Tagatose in Arabidopsis inoculated with Hyaloperonospora arabidopsidis (Hpa) isolate Noco-2 at gene expression level, we performed a RNA-seq analysis using the Illumina NGS. As a result, there are no significant differences on the gene expression patterns between in mock- and D-tagatose-treated Arabidopsis plants and Hyaloperonospora arabidopsidis.
Project description:We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations at different stages of infection with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis : initiation (< 1 dpi) and maintenance of infection (> 4 dpi).
Project description:The Arabidopsis thaliana defense regulator EDM2 was previously shown to be specifically required for disease resistance to the pathogenic oomycete Hyaloperonospora parasitica aradidopsis mediated by the R protein RPP7. We found EDM2 to have a promoting effect on several distinct developmental processes, such as leaf pavement cell development, vegetative phase change or the floral transition. We further identified the atypical protein kinase WNK8 to physically interact with EDM2 in nuclei. Microarray data support regulatory interactions between WNK8 and EDM2 as well as their functional association with the autonomous floral promotion pathway.