Project description:Bovine tuberculosis (bTB), caused by Mycobacterium bovis (Mycobacterium tuberculosis complex), is a zoonotic disease that affects cattle and wildlife worldwide. In some regions of Spain, Iberian red deer (Cervus elaphus hispanicus) can serve as reservoir of infection, thus increasing the risk of human and cattle exposure and infection. Mesenteric lymph nodes are naturally infected with M. bovis in Iberian red deer, in which the digestive route of infection is particularly important in Mediterranean Spain. In this study we characterized the differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer naturally infected with M. bovis using a Ruminant Immuno-inflammatory Gene Universal Array (RIGUA) and real-time RT-PCR. Of the 600 genes that were analyzed in the microarray, 157 showed ? 1.2 fold changes in expression in infected or uninfected deer and 17 genes displayed an expression fold change greater than 1.7 with a P-value ? 0.05 and were selected for further analysis. These genes included tight junction proteins (Z02 and occluding), IL-11R, bactenecin, CD62L, CD74, desmoglein, IgA and IgM that constitute new findings and suggest new mechanisms by which M. bovis may modulate host inflammatory and immune responses. Identification of genes differentially expressed in animals and tissues naturally infected with M. bovis contributes to our basic understanding of the mechanisms of pathogenesis and protective immunity to mycobacterial infections and may have important implications for future functional genomic and vaccine studies to aid in the control of bTB in deer and other wildlife reservoir species. Mesenteric lymph node RNA from four different uninfected Iberian red deer stags and two Iberian red deer stags infected with Mycobacterium bovis. Infected animals were naturally infected with M. bovis. All animals were hunter-harvested and the tissues retrieved 2-6 hrs after animal hunting.
Project description:Gray leaf spot (GLS) disease of maize is caused by the fungus Cercospora zeina in African countries, such as South Africa. The plant material was from maize inbred line B73-QTL, which was introgressed with a QTL region for resistance to GLS from the maize inbred line CML444 (Berger et al (2014) BMC Genetics 15 60 www.biomedcentral.com/1471-2156/15/60 ). This QTL was named 10G2_GLS and 10H_GLS from two field trials in KwaZulu-Natal province, South Africa in that study. B73-QTL plants were planted in the field, and subjected to natural infection with C. zeina. This was the same field trial as B73 plants that were sampled for RNAseq and the data reported in Swart et al (2017) Mol Plant Microbe Interact 30 710-724 (2017)(GSE94442). Samples were collected from lower leaves with moderate GLS lesions and younger upper leaves of the same B73-QTL plants with very few immature GLS lesions. The first aim of the experiment was to compare the maize transcriptomes during C.zeina challenge between B73 (from GSE94442 data) and B73-QTL plants (this study). The second aim was to identify novel transcripts expressed from the QTL region, which may underlie the quantitative disease resistance to GLS. The third aim was to identify C. zeina genes expressed in planta during infection.
2020-02-14 | GSE137198 | GEO
Project description:Soil fungal diversity associated with burnt vs mulched trial plots in KwaZulu-Natal Province of South Africa