Project description:Gray leaf spot (GLS) disease of maize is caused by the fungus Cercospora zeina in African countries, such as South Africa. The plant material was from maize inbred line B73-QTL, which was introgressed with a QTL region for resistance to GLS from the maize inbred line CML444 (Berger et al (2014) BMC Genetics 15 60 www.biomedcentral.com/1471-2156/15/60 ). This QTL was named 10G2_GLS and 10H_GLS from two field trials in KwaZulu-Natal province, South Africa in that study. B73-QTL plants were planted in the field, and subjected to natural infection with C. zeina. This was the same field trial as B73 plants that were sampled for RNAseq and the data reported in Swart et al (2017) Mol Plant Microbe Interact 30 710-724 (2017)(GSE94442). Samples were collected from lower leaves with moderate GLS lesions and younger upper leaves of the same B73-QTL plants with very few immature GLS lesions. The first aim of the experiment was to compare the maize transcriptomes during C.zeina challenge between B73 (from GSE94442 data) and B73-QTL plants (this study). The second aim was to identify novel transcripts expressed from the QTL region, which may underlie the quantitative disease resistance to GLS. The third aim was to identify C. zeina genes expressed in planta during infection.
Project description:Whole genome sequencing of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa
| PRJNA559528 | ENA
Project description:Molecular Epidemiology of Antibiotic Resistant ESKAPE Pathogens Isolated from Public Sector Hospitals in uMgungundlovu District, KwaZulu-Natal, South Africa Genome sequencing and assembly
Project description:Genomic Epidemiology of Antibiotic-Resistant Bacteria from Agricultural Soil Fertilized with Poultry Manure in KwaZulu Natal, South Africa
| PRJNA609650 | ENA
Project description:Soil fungal diversity associated with burnt vs mulched trial plots in KwaZulu-Natal Province of South Africa
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>