Project description:Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is wellstudied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.
Project description:Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment. Six mesocosm enclosures were placed in the Raunefjorden (Western Norway coast) and filled with natural community water (in June 2008). Nutrient enrichment was applied in order to trigger the development of E. huxleyi blooms. The major transcriptomic features of those blooms and consequent viral infections were monitered through the use of an oligo microarray containing a total of 3571 gene probes; 2271 (63.6%) matching E. huxleyi ESTs, and 1300 (36.4%) matching EhV-86 and EhV-163 genomic sequences. Each microarray contains 5 technical replicates. Sampling of total RNA present in 2L of water (from each enclosure) was performed once a day from day 8 to day 16. For enclosures 2 and 3 other sampling points were taken, covering the complete dial-cycle (6h,12h,18h, and 24h).
Project description:Phytoplankton blooms represent hotspots of primary production and lead to the formation of particulate organic matter composed of living and dead algal cells. These particles are characterized by steep chemical gradients, for instance in oxygen concentration, that provide diverse ecological niches for specifically adapted microbes to thrive. Particulate fractions were collected at almost daily intervals between early March and late May in 2018. Amplicon sequencing and Meta-omics was used to asses microbial community composition and functionality at different time points.
Project description:Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment.
2011-11-22 | GSE24341 | GEO
Project description:The dynamics of estuarine prokaryotic communities during algal blooms
Project description:Prymnesium parvum is regarded as one of the most notorious harmful algal bloom (HAB) species worldwide. In recent years, it has frequently formed toxic blooms in coastal and brackish waters of America, Europe, Australia, Africa and Asia, causing large-scale mortalities of wild and cultured fish and other gill-breathing animals. In the last decade, blooms of P. parvum have expanded to inland fresh waters in the USA, presumably due to changes in environmental conditions. The aim of the experiment was to establish the gill transcriptomic responses to P. parvum in rainbow trout. We used 2 different concentrations of P. parvum and identified fish with low and moderate responses to the algae. Based on the dose of and the fish response, fish were classified into 4 groups with high exposure/moderate response (HM), high exposure/low response (HL), low exposure/low response (LL) and control group (C) with no exposure/no response. Gene expression profiling of the gill tissue was performed using a microarray platform developed and validated for rainbow trout.
Project description:Eutrophication can lead to an uncontrollable increase in algal biomass, which has repercussions for the entire microbial and pelagic community. Studies have shown how nutrient enrichment affects microbial species succession, however details regarding the impact on community functionality are rare. Here, we applied a metaproteomic approach to investigate the functional changes to algal and bacterial communities, over time, in oligotrophic and eutrophic conditions, in freshwater microcosms. Samples were taken early during algal and cyanobacterial dominance and later under bacterial dominance. 1048 proteins, from the two treatments and two timepoints, were identified and quantified by their exponentially modified protein abundance index. In oligotrophic conditions, Bacteroidetes express extracellular hydrolases and Ton-B dependent receptors to degrade and transport high molecular weight compounds captured while attached to the phycosphere. Alpha- and Beta-proteobacteria were found to capture different substrates from algal exudate (carbohydrates and amino acids, respectively) suggesting resource partitioning to avoid direct competition. In eutrophic conditions, environmental adaptation proteins from cyanobacteria suggested better resilience compared to algae in a low carbon nutrient enriched environment. This study provides insight into differences in functional microbial processes between oligo- and eutrophic conditions at different timepoints and highlights how primary producers control bacterial resources in freshwater environments.