Project description:Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk-factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data, and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific autoantibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.
Project description:This study utilizes multi-omic biological data to perform deep immunophenotyping on the major immune cell classes in COVID-19 patients. 10X Genomics Chromium Single Cell Kits were used with Biolegend TotalSeq-C human antibodies to gather single-cell transcriptomic, surface protein, and TCR/BCR sequence information from 254 COVID-19 blood draws (a draw near diagnosis (-BL) and a draw a few days later (-AC)) and 16 healthy donors.
Project description:Analysis of COVID-19 hospitalized patients, with different kind of symptoms, by human rectal swabs collection and 16S sequencing approach.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:Red blood cells (RBC) depleted whole blood from COVID-19 patients and controls was harvested and processed in order to performed 10X single cell RNA-seq. For COVID-19 patients 2 samples 10 days a part were analyzed.
Project description:Many clinical risk factors for severe COVID-19, such as diabetes, hypertension, and high body mass index have been reported. However, searching for additional risk factors should be continued to predict the progression of severe COVID-19 more accurately. We suppose that clonal hematopoiesis of indeterminate potential (CHIP) can also be regarded as one of risk factors. To identify the influence of CHIP in COVID-19 pathogenesis, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from severe COVID-19 patient with CHIP and integrate the data with other published COVID-19 scRNA seq data (GSE149689). After clustering and annotating cell types, we compare the expression profiles between CHIP vs non-CHIP COVID-19 severe patient.
Project description:We utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. Our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.
Project description:An early analysis of circulating monocytes may be critical for predicting COVID-19 course and its sequelae. In 131 untreated, acute COVID-19 patients at emergency room (ER) arrival, monocytes showed decreased surface molecules expression, including HLA-DR, in association to an inflammatory cytokine status and limited anti-SARS-CoV-2-specific T cell response. These alterations were mostly normalized in post-COVID-19 patients, 6 months after discharge. Acute COVID-19 monocytes transcriptome showed upregulation of anti-inflammatory, tissue repair genes such as BCL6, AREG and IL-10 and increased accessibility of chromatin. Some of these transcriptomic and epigenetic features still remained in post-COVID-19 monocytes. Importantly, a poorer expression of surface markers and low IRF1 gene transcription in circulating monocytes at ER defined a COVID-19 patients group with impaired SARS-CoV-2-specific T cell response and increased risk of requiring intensive care or dying. An early analysis of monocytes may be useful for COVID-19 patients stratification and to designing innate immunity-focused therapies.
Project description:The on-going COVID-19 pandemic requires a deeper understanding of the long-term antibody responses that persist following SARS-CoV-2 infection. To that end, we determined epitope-specific IgG antibody responses in COVID-19 convalescent sera collected at 5 months post-diagnosis and compared that to sera from naïve individuals. Each serum sample was reacted with a high-density peptide microarray representing the complete proteome of SARS-CoV-2 as 15 mer peptides with 11 amino acid overlap and homologs of spike glycoprotein, nucleoprotein, membrane protein, and envelope small membrane protein from related human coronaviruses. Binding signatures were compared between COVID-19 convalescent patients and naïve individuals using the web service tool EPIphany.