Project description:Programmable base editing of RNA enables rewriting the genetic codes on specific sites. Current tools for specific RNA editing dependent on the assembly or recruitment of the guide RNA into an RNA/protein complex, which may cause delivery barrier and low editing efficiency. Here we report a new set of tools, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. The REWIRE system contains a human-originated programmable RNA-binding domain (PUF domain) to specifically recognize target sequence and different deaminase domains to achieve A-to-I or C-to-U editing. By utilizing this system, we have achieved editing efficiencies up to 80% in A-to-I editing and 65% in C-to-U editing, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. We applied the REWIREs to correct disease-associated mutations and modify mitochondrial RNAs, and further optimized the REWIREs to improve the editing efficiency and minimize off-target effects. As a single-component base editing system originated from human proteins, REWIRE presents a precise and efficient RNA-editing platform with broad applicability in basic research and gene therapy.
2022-09-20 | GSE155734 | GEO
Project description:Optimized in vivo base editing restores auditory function in a DFNA15 mouse model of deafness
| PRJNA1194950 | ENA
Project description:Optimized in vivo base editing restores auditory function in a DFNA15 mouse model of deafness
| PRJNA1194749 | ENA
Project description:in vivo base editing in adult dystrophic mice
| PRJNA673243 | ENA
Project description:Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation
Project description:We show that delivering the mitochondrial base editor DdCBEs via AAV transduction of somatic cells efficiently produces precise base editing of the intended region.
Project description:This study investigates how lead exposure triggers cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. We assessed hearing thresholds, outer hair cell activity, and synaptic changes in the cochlea. Lead exposure raises hearing thresholds, indicating cochlear synaptopathy. Notably affects synapses in the basal turn without impacting outer hair cells. In addition to this, lead altered the abundance of 352 synaptic proteins, with the synaptic vesicle cycle pathway prominently affected. Lead-induced cochlear synaptopathy targets basal cochlear regions, implicating synaptic vesicle cycle signaling in hearing loss. Revealing specific mechanisms behind lead-induced hearing deficits enhances targeted interventions and preventive strategies, advancing our understanding of lead induced hearing loss.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:We performed a microarray analysis of auditory midbrain (inferior colliculus, IC) mRNA from young adult CBA mice (controls) with good hearing, middle aged (MA) with good hearing, and old mild (MP) and severe (SP) presbycusic CBA mice. Fold Change data derived from RMA normalization revealed that the overall GABA receptor alpha 6 expression profiles for MA, MP and SP were down-regulated relative to young adult controls with good hearing. Relative real-time PCR for five GABA receptors confirmed this age-related down regulation quantitatively. Functional hearing data: Auditory Brainstem Responses (ABR) enriched the analysis to select the probe-sets that changed with age and hearing loss by the linear regression best-fit line model technique. GABA receptor genotype-phenotype correlations with auditory functional data indicated that GABA-receptor subtypes are under expressed in SP mice. Hierarchical clustering (HC) analyses yielded statistical significance of normalized GeneChip data Real-time PCR showed that Gabra6, GABA B receptor 1 (Gabbr1), and Gaba transporter protein Slc32a1 may be involved in physiological changes that occur in age-related hearing loss. Presbycusis – age-related hearing loss – is the number one communicative disorder of our aged population. In this study we analyzed gene expression for a set of GABA receptors in the inferior colliculus of aging CBA mice using the Affymetrix GeneChip MOE430A. Functional phenotypic hearing changes from RMA normalized microarray data (39 replicates) in four age-groups, Young Controls and Middle aged mice with good hearing, mild and sever e presbycusis from old mice. Fold change gene expression derived from RMA normalized data were first subjected to one-way ANOVA, and then linear regression was performed. The selected gene expression changes were confirmed by relative real-time relative to young adult controls with good hearing. Statistically significant and real time PCR confirmed GABA receptor genes; Gabra6, GABA B receptor 1 (Gabbr1), and Gaba transporter protein Slc32a1, may be involved in physiological changes that occur in age-related hearing loss. Lastly, gene expression measures of each age group were correlated with pathway/network relationships relevant to the inferior colliculus using Pathway Architect, to identify key pathways consistent with the gene expression changes observed In the study of Expression changes in IC GABA receptors in the Auditory Midbrain of young adult and aging presbycusis mice total of thirty nine chips were used. The normal aging mice were in Four groups Young adults Controls with good hearing (8 mice, 8 MOE430A GeneChips), Middle aged group with good hearing ( 17 mice, 17 MOE430A GeneChips), Mild Presbycusis with limited hearing loss (9 mice, 9 MOE430A GeneChips) and Severe Presbycusis (5 mice, 5 MOE430A GeneChips).