Project description:These data include the genome wide location of different histone modifications by ChIP sequencing in mouse ES cells, and RNA Seq data generated from wild type and EED KO mouse ES cells and knocked down for unrelated protein and Setd2 protein. ChIP-Seq: Immuno-precipitation of formaldehyde cross-linked chromatin prepared from wild type mouse E14 ES cells, wild type E36 ES cells, EED KO E36 ES cells, wild type Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO) using specific antibody against different histone modifications. RNA-Seq: Total RNA extracted from wild type E36 ES cells, EED KO E36 ES cells, wild type E36 Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO), E14 Ctrl KD, E14 Setd2 KD.
Project description:Polycomb repressive complexes (PRCs) are important chromatin regulators of ES cell function. RYBP binds Polycomb H2A monoubiquitin ligases Ring1A and Ring1B, and has been suggested to participate in localizing Polycomb complexes to their targets. Moreover, constitutive inactivation of RYBP precludes ES cell formation. Here we have used ES cells conditionally deficient in RYBP to investigate RYBP function. Chromosome immunoprecipitation on a chip (ChIP-chip) of RYBP and microarray experiments were performed using wild type and knocked-out ES cells. Gene expression profiling of WT, conditionally deficient in RYBP with or without Yaf2 RNAi, and ChIP-chip of RYBP on promoters of WT, Dnmt1-KO or Eed-KO ES cells.
Project description:These data include the genome wide location of different histone modifications by ChIP sequencing in mouse ES cells, and RNA Seq data generated from wild type and EED KO mouse ES cells and knocked down for unrelated protein and Setd2 protein.
Project description:The established hierarchical model explaining co-occupancy of Polycomb repressor complexes 1 and 2 (PRC 1 and 2) at target loci proposes that the chromodomain of the polycomb protein, a core PRC1 subunit, recognises the H3K27me3 histone modification catalysed by PRC2. We used chromatin immunoprecipitation to analyse PRC1 occupancy at target loci in Eed-/- mouse embryonic stem cells (ESCs) that lack H3K27me3. Occupancy of the core PRC1 proteins Ring1B and Mel18 was strongly reduced, consistent with the hierarchical model. However, levels of H2A ubiquitylation (H2AK119u1), the histone modification catalysed by PRC1, were similar to wild-type cells, suggesting PRC1 recruitment is independent of H3K27me3. ChIP-sequencing analysis of Ring1B occupancy genome wide substantiated this conclusion, demonstrating significant Ring1B levels at polycomb target loci in Eed-/- ESCs. Thus PRC1 and PRC2 are recruited independently to sites that they co-occupy. We conclude that the primary function of H3K27me3 is to increase the residency of PRC1 at target loci and thereby to contribute to the stability of PRC1 mediated silencing. Examination of Ring1B binding in WT, Eed ko and Input of ESCs Examination of CBX7 in WT and Eed ko of ESCs
Project description:Polycomb repressive complexes (PRCs) are important chromatin regulators of ES cell function. RYBP binds Polycomb H2A monoubiquitin ligases Ring1A and Ring1B, and has been suggested to participate in localizing Polycomb complexes to their targets. Moreover, constitutive inactivation of RYBP precludes ES cell formation. Here we have used ES cells conditionally deficient in RYBP to investigate RYBP function. Chromosome immunoprecipitation on a chip (ChIP-chip) of RYBP and microarray experiments were performed using wild type and knocked-out ES cells. This SuperSeries is composed of the SubSeries listed below.
Project description:We used microarrays to detail the role of Polycomb proteins including Ezh2 and Eed in maintaining ES cell identity and executing pluripotency. Experiment Overall Design: To assay the global effects of the loss of polycomb proteins (Ezh2 or Eed) in embryonic stem (ES) cells , we compared the expression profiles of homologuous Ezh2 or Eed knockout ES cells to wild-type ES cells in undifferentiated or differentiated condition.