Project description:Highland barley liquor is a distilled spirit made from highland barley on the Tibetan Plateau, but its alcohol yield is limited by the high fiber content of the raw material. In the field of biomass resources, functional microorganisms are commonly used in pretreatment to degrade cellulose and other substances, improving fermentation output. In this study, we isolated the cellulose-degrading probiotic Lactobacillus delbrueckii GR-8 (CMCase 6.21 U/mL) from the traditional vegetable-based fermented food "Jiangshui" and applied biological pretreatment to the fermentation of highland barley liquor. During pretreatment, probiotics enhanced cellulase and amylase activities in the fermented grains, resulting in a 25% reduction in cellulose content and a 112% increase in free reducing sugar content. The pretreatment significantly altered the microbial community structure, enhancing microbial diversity. After distillation, alcohol yield increased by 3.5%, and total acid and ester contents rose by 25% and 23%, respectively. Pyrazine compounds increased by 1290%, while higher alcohols like nonanol, phenylethanol, and hexanol decreased. The treated liquor caused less harm to mice, who showed improved memory, motor skills, and lower oxidative liver damage. This study demonstrates that biological pretreatment enhances both fermentation and the quality of Chinese spirits.
Project description:Microbial fermentation is involved in the processing of a dark tea popular for centuries in Northwest China which has shown many health benefits. This study will examine anti-obesity, hyperlipidemic and hyperglycemic effects of CGMCC No.8730 Eurotium cristatum (EC) fermented dark tea (8730DT).
Project description:Pu-erh tea has attracted increasing attention worldwide because of its special flavor and health effects, but its impact on composition and function of the gut microbiota remains unclear. The aim of this study was to investigate effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and metaproteomic investigation of the microbial communities in cecal samples taken from obese rats administrated with or without extracts of raw and ripe Pu-erh tea. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that, despite differences in the chemical compositions of the raw and ripe Pu-erh tea, administration of either at two different doses (0.15 and 0.40 g/Kg body weight), significantly (P<0.05) increased community diversity, and changed the composition of the cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes including sucrose metabolism, glycolysis, syntheses of proteins, rRNA and antibiotics were significantly (P<0.05), or had a tendency (0.10<P<0.05) to be, promoted by enriching relevant enzymes. Furthermore, evidences from population, molecular and metabolic levels have shown that polyphenols of raw Pu-erh tea and their metabolites can promote potentially the growth of Akkermansia municiphila by stimulating the type II and III secretion system protein, elongation factor Tu, and glyceraldehyde-3-phosphate dehydrogenase. This study has provided new evidences for the prebiotic effects of Pu-erh tea.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:S. bombicola was fermented under two different nitrogen sources (yeast extract or ammonium sulfate). The fermentation broth after 7 days’ cultivation was taken for extracellular proteins analysis.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Analysis of non-differentiated Caco-2 intestinal epithelial cell line treated with polydextrose fermentation metabolites fermented for 48 hours in 4-stage in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse and distal colon in sequence , as well as with medium, 100 mM NaCl and 5 mM butyrate. Polydextrose, a soluble fiber fermented in colon, was fermented with the in vitro colon simulator in three amounts of 0%, 1% and 2%. Results provide insight into the mechanisms underlying colon cancer cells and a comparison of a complex fiber metabolome to 5 mM butyrate and 100 mM NaCl. Furthermore, the results give insight of dosage effect of increasing the concentration of fiber. High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse and distal colon in sequence. The subsequent fermentation metabolome were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated classes linked with cell cycle, and affected number of metabolically active cells. Further, up-regulated effects on classes linked with apoptosis implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARg and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia. Non-differentiated Caco-2 cells were treated with polydextrose fermentation metabolites from the vessels representing different parts of the colon, or with 100 mM NaCl or with 5 mM butyrate for 24 hours. For polydextrose fermentation three concentrations of polydextrose were used: 0%, 1% and 2% for a simulation that lasted for 48 hours. Polydextrose fermentation samples from total of 12 vessels, as well as from medium sample, 5 mM butyrate and 100 mM NaCl were analysed as single replica.
Project description:Analysis of non-differentiated Caco-2 intestinal epithelial cell line treated with polydextrose fermentation metabolites fermented for 48 hours in 4-stage in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse and distal colon in sequence , as well as with medium, 100 mM NaCl and 5 mM butyrate. Polydextrose, a soluble fiber fermented in colon, was fermented with the in vitro colon simulator in three amounts of 0%, 1% and 2%. Results provide insight into the mechanisms underlying colon cancer cells and a comparison of a complex fiber metabolome to 5 mM butyrate and 100 mM NaCl. Furthermore, the results give insight of dosage effect of increasing the concentration of fiber. High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse and distal colon in sequence. The subsequent fermentation metabolome were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated classes linked with cell cycle, and affected number of metabolically active cells. Further, up-regulated effects on classes linked with apoptosis implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARg and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.
Project description:The consumption of fermented food has been linked to positive health outcomes due to a variety of functional properties. Fermented dairy constitutes a major dietary source and contains lactoseas main carbohydrate and living starter cultures. To investigate whether nutritional and microbial modulation impacted intestinal microbiota composition and activity, we employed fecal microbiota fermentations and a dairy model system consisting of lactose and β-galactosidase positive and negative Streptococcus thermophilus. Based on 16S rRNA gene based microbial community analysis, we observed that lactose addition increased the abundance of Bifidobacteriaceae, and of Veillonellaceae and Enterobacteraceae in selected samples. The supplied lactose was hydrolysed within 24 h of fermentation and led to higher expression of community indigenous β-galactosidases. Targeted protein analysis confirmed that bifidobacteria contributed most β-galactosidases together with other taxa including Escherichia coli and Anaerobutyricum hallii. Lactose addition led to 1.1-1.8 fold higher levels of butyrate compared to controls likely due to (i) lactate-crossfeeding and (ii) direct lactose metabolism by butyrate producing Anaerobutyricum and Faecalibacterium spp. Representatives of both genera used lactose to produce butyrate in single cultures. When supplemented at around 5.5 log cells mL-1, S. thermophilus or its beta-galactosidase negative mutant outnumbered the indigenous Streptococcaceae population at the beginning of fermentation but had no impact on lactose utilisation and final SCFA profiles. This study brings forward new fundamental insight into interactions of major constituents of fermented dairy with the intestinal microbiota. We provide evidence that lactose addition increases fecal microbiota production of butyrate through cross-feeding and direct metabolism without contribution of starter cultures.