Project description:. In this study we show successful use of SWATH-MS for quantitative proteomic analysis of a microbial electrochemically active biofilm. Shewanella oneidensis MR-1 was grown on carbon cloth electrodes under continuous anodic electrochemical polarizations in a bioelectrochemical system. Using lactate as the electron donor, anodes serving as terminal microbial electron acceptors were operated at three different electrode potentials (+0.71V, +0.21V & -0.19V vs. SHE) and the development of catalytic activity was monitored by measuring the current traces over time. Once maximum current was reached (usually within 21-29 hours) the electrochemical systems were shut off and biofilm proteins were extracted from the electrodes for proteomic assessment.
Project description:The global sanitary crisis derived from antibiotic multi-resistant bacteria entails the need to reduce sulfamethoxazole (SMX) concentrations in wastewater treatment plants (WWTPs). The key microorganisms and the biotransformation mechanisms leading to SMX removal remain incompletely characterized, particularly under aerobic heterotrophic conditions, which are becoming increasingly relevant in the design of novel, more energy-efficient, WWTPs. In this study, sequential batch reactors were inoculated with activated sludge, operated in heterotrophic conditions and spiked with six different initial SMX concentrations ranging between 0 and 2000 µg L-1. The goal was to determine the influence of SMX in the microbiome and its enzymatic expression through genomic, metaproteomic and transformation product analyses. The results allowed us to identify the metabolite 2,4(1H,3H)-pteridinedione-SMX (PtO-SMX), pointing to the role of the pterin-conjugation pathway in the biotransformation of SMX. Additionally, at increased SMX concentrations, through metaproteomics and 16S rRNA gene sequencing, it was determined a higher abundance of the genus Corynebacterium and a differential expression of five enzymes involved in its central metabolism, suggesting the relevant role of this bacteria to mitigate SMX risks.
2022-09-20 | PXD029711 | Pride
Project description:Biochar waste derived electrodes performances in different bioelectrochemical applications
Project description:There is a wide diversity of potential applications for direct electron transfer from electrodes to microorganisms, which might be better optimized if the mechanisms for this novel electrode-biofilm interaction were better understood. Geobacter sulfurreducens is one of the few microorganisms available in pure culture that is known to be capable of directly accepting electrons from a negatively poised electrode. A microarray comparison of cells accepting electrons from the electrode versus cells donating electrons to the electrode reveals that the genes previously observed to be upregulated in current-producing biofilms are not highly expressed in current-consuming biofilms.
Project description:There is a wide diversity of potential applications for direct electron transfer from electrodes to microorganisms, which might be better optimized if the mechanisms for this novel electrode-biofilm interaction were further understood. Geobacter sulfurreducens is one of the few microorganisms available in pure culture that is known to be capable of directly accepting electrons from a negatively poised electrode. Gene transcript abundance in cells of G. sulfurreducens using electrons delivered from a graphite electrode as the sole electron donor for fumarate reduction was compared with transcript abundance in cells growing on the same graphite material, but without an electrical connection and acetate as the electron donor.
Project description:Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). In TD-SCVs, mutations of thymidylate synthase (thyA, TS), essential for DNA synthesis, occur. However, it has never been shown, that TMP-SMX is responsible for the induction and selection of TD-SCVs. Short-term exposure of TMP-SMX induced the TD-SCV phenotype morphologically as shown in transmission electron-microscopy and on the transcriptional level by qRT-PCR in wild-type S. aureus, while selection of TD-SCVs with thyA mutations occurred only rarely after long-term exposure. In reversion experiments with clinical TD-SCVs, all revertants revealed compensating mutations at the initially identified mutation site. Whole DNA microarray analysis of a thyA deletion mutant (M-bM-^HM-^FthyA), which exhibited the typical TD-SCV phenotype, identified tremendous alterations compared to the wild-type. Important virulence regulators such as agr, arlRS, sarA and major virulence determinants including hla, hlb, sspA, sspB and geh were down-regulated, while genes associated with the colonization capacity like fnbA, fnbB, spa, clfB, sdrC and sdrD were up-regulated. The expression of genes involved in pyrimidine and purine metabolism as well as in nucleotide interconversion changed significantly. The M-bM-^HM-^FthyA-mutant was attenuated in virulence in both, a Caenorhabditis elegans killing model and an acute murine pneumonia model. Furthermore, competition experiments in vitro and in vivo (using a chronic pneumonia mouse model) revealed a survival and growth advantage of the M-bM-^HM-^FthyA-mutant under low thymidine conditions and TMP-SMX exposure. In conclusion, our results clearly show for the first time that TMP-SMX induces the TD-SCV phenotype after short-term exposure in S. aureus and that long-term exposure selects thyA mutations providing an advantage for TD-SCVs under specified conditions. Thus, our results help to understand the dynamic processes of induction and selection of S. aureus TD-SCVs during TMP-SMX exposure. 18 independent samples were analysed; for each isolate and time point 3 replicates were performed
Project description:Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). In TD-SCVs, mutations of thymidylate synthase (thyA, TS), essential for DNA synthesis, occur. However, it has never been shown, that TMP-SMX is responsible for the induction and selection of TD-SCVs. Short-term exposure of TMP-SMX induced the TD-SCV phenotype morphologically as shown in transmission electron-microscopy and on the transcriptional level by qRT-PCR in wild-type S. aureus, while selection of TD-SCVs with thyA mutations occurred only rarely after long-term exposure. In reversion experiments with clinical TD-SCVs, all revertants revealed compensating mutations at the initially identified mutation site. Whole DNA microarray analysis of a thyA deletion mutant (∆thyA), which exhibited the typical TD-SCV phenotype, identified tremendous alterations compared to the wild-type. Important virulence regulators such as agr, arlRS, sarA and major virulence determinants including hla, hlb, sspA, sspB and geh were down-regulated, while genes associated with the colonization capacity like fnbA, fnbB, spa, clfB, sdrC and sdrD were up-regulated. The expression of genes involved in pyrimidine and purine metabolism as well as in nucleotide interconversion changed significantly. The ∆thyA-mutant was attenuated in virulence in both, a Caenorhabditis elegans killing model and an acute murine pneumonia model. Furthermore, competition experiments in vitro and in vivo (using a chronic pneumonia mouse model) revealed a survival and growth advantage of the ∆thyA-mutant under low thymidine conditions and TMP-SMX exposure. In conclusion, our results clearly show for the first time that TMP-SMX induces the TD-SCV phenotype after short-term exposure in S. aureus and that long-term exposure selects thyA mutations providing an advantage for TD-SCVs under specified conditions. Thus, our results help to understand the dynamic processes of induction and selection of S. aureus TD-SCVs during TMP-SMX exposure.
Project description:Potentiated sulfonamide antibiotics such as trimethoprim/sulfamethoxazole (cotrimoxazole or TMP/SMX) remain the drugs of choice for treatment and prevention of Pneumocystis jiroveci pneumonia, toxoplasma encephalitis, and Isospora infections in HIV infection (aidsinfo.nih.gov). However, HIV-infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to TMP/SMX (20-57% incidence) when compared to the general population (3% incidence). The typical manifestation is maculopapular rash with or without fever, and TMP/SMX is the most common cause of cutaneous drug reactions in HIV-infected patients TMP/SMX can also lead to thrombocytopenia, hepatotoxicity, and bullous skin eruptions in more severely affected patients. The risk of sulfonamide HS increases with progression to AIDS, with higher risk seen at lower CD4+ counts. This risk has been attributed, at least in part, to acquired alterations in SMX drug disposition in HIV infection. We hypothesized that HIV infection leads to impaired hepatic SMX detoxification or enhanced SMX bioactivation pathways, which may contribute to the increased incidence of sulfonamide HS. We addressed this question using liver tissue from SIVmac239-infected macaques, a well accepted model of HIV infection. The aim of this study was to evaluate differences in the hepatic expression and activity of SMX biotransformation pathways from drug naïve SIV-infected macaques compared to sex- and age-matched uninfected controls.
Project description:A chemical screen was performed in search of compounds that modify plant responses to sucrose. This screen uncovered that sulfamethoxazole (SMX), a folate biosynthesis inhibitor, acted synergistically with sucrose to inhibit hypocotyl elongation, suggesting interaction between these two pathways. Transcriptome analysis was performed to identify changes in transcript abundance that may underpin crosstalk between sucrose and SMX. Three-day-old dark-grown seedlings were treated to sucrose and SMX at concentrations that induced no change in hypocotyl elongation when administered independently, yet restricted elongation when both were present in the growth media (10mM and 0.2µM, respectively). This analysis uncovered multiple core auxin signalling components that exhibit altered transcript abundance in response to co-treatment with sucrose and SMX, suggesting that auxin signalling mediates crosstalk between these two pathways. This study highlights an input through which metabolic status can shape plant growth and development through hormone signalling. 12 arrays total. Three arrays as non-treated control, three arrays from seedlings raised in presence of 0.2µM SMX, three arrays from seedlings raised in presence of 10mM sucrose, and three arrays from seeldings raised in presence of both 10mM sucrose and 0.2µM SMX. Three biological replicates were produced for each growth treatment.