Project description:Cervical tissue and discharge samples were collected from patients with high-grade squamous intraepithelial lesion (HSIL) and adenocarcinoma in situ (AIS). Normal tissue samples were also collected for miRNA expression comparison. The samples were then sent for small RNA sequencing to obtain the miRNA counts for the miRNA profiles of the samples.
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type. In this study we used a common reference design experiment where the common reference used was a commercial RNA from normal cervix (Ambion) and the test samples were 4 pre-treatment squamous cell cervical carcinoma, 7 high-grade Squamous Intraepithelial Lesion (CINII, n=2 and CIN III, n=5) sample, 9 low-grade Squamous Intraepithelial Lesion (CIN I) samples, 19 normal cervix samples and 4 pools of normal cervix samples.
Project description:Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital’s outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with ’’negative for intraepithelial lesion or malignancy’ (NILM), 21 samples with ’atypical squamous cells of undetermined significance’ (ASC-US), and 33 samples with ’low-grade squamous intraepithelial lesion and worse’ (≥LSIL) were analyzed, using cytology and the patients’ histology reports.
Project description:Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital’s outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with ’negative for intraepithelial lesion or malignancy’ (NILM), 21 samples with ’atypical squamous cells of undetermined significance’ (ASC-US), and 33 samples with ’low-grade squamous intraepithelial lesion and worse’ (≥LSIL) were analyzed, using cytology and the patients’ histology reports. Highly accurate concordance was obtained for gold standard-confirmed samples, demonstrating that the MCM3/EVPL ratio can discriminate between non-dysplastic and dysplastic samples. On that account, we propose that MCM3 and EVPL are promising candidate protein biomarkers for population-based cervical cancer screening.
Project description:CircRNAs have been found to regulate mRNA expression levels and serve an important role in cervix carcinogenesis. To explore the circRNA expression profiles during the development and progression of cervical cancer, we performed microarray analysis with total RNA in normal cervical epithelium(n=7), HPV16 positive high-grade squamous intraepithelial lesion (HSIL)(n=6), and HPV16 positive cervical squamous cell carcinoma tissues(n=7).
Project description:To explore the circRNA expression profiles during the development and progression of cervical cancer, we performed RNA sequencing analysis with ribosomal RNA-depleted in HPV negative normal cervical epithelium, HPV16 positive normal cervical epithelium, HPV16 positive high-grade squamous intraepithelial lesion (HSIL), and HPV16 positive cervical squamous cell carcinoma tissues,6 cases in each group.Totally 66868 circRNAs were identified (Back-spliced junctions reads≥1)
Project description:10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix samples were obtained using laser capture miicrodissection. Two rounds of T7-based linear RNA amplification using the Arcturus RiboAmp kit were performed for each sample, and assayed using Affymetrix HG_U133A arrays. Experiment Overall Design: 10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix, each from different patients, were each assayed on single HG_U133A arrays. Three additional test samples were also assayed. Experiment Overall Design: The log-transformed probe-set values and the results of the statistical analysis for each probe-set, and the associated README file, are included as Supplementary files.
Project description:10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix samples were obtained using laser capture miicrodissection. Two rounds of T7-based linear RNA amplification using the Arcturus RiboAmp kit were performed for each sample, and assayed using Affymetrix HG_U133A arrays. Keywords: disease state analysis
2007-12-11 | GSE7803 | GEO
Project description:Histone lactylation in normal cervical epithelium, high-grade squamous intraepithelial lesion, and cervical squamous cell carcinoma
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type.