Project description:Analysis of function of CD11c+ cells from middle-aged and young mice at gene level. This experiment provided insight into the different genes that plays roles in inflammation, immune response and mainly arachidonic acid cascade that are differentiall expressed in CD11c+ cells from middle aged and young mice. Total RNA was isolated from pulmonary CD11c cells (separated using magnetic beads) from middle-aged and young mice
Project description:we utilize Nano-MeDIP-seq for the analysis of the LT-HSC methylome and, for the first time, simultaneously interrogate the methylome and transcriptome of a homogeneous population of primary murine HSCs, in order to define the underlying causes of changes in HSC functionality during normal ageing. We isolated and phenotyped primary LT-HSCs from young, middle-aged and old mice and subjected them to comprehensive methylome (MeDIP-seq) and transcriptome (RNA-seq) analysis.
Project description:Analysis of function of CD11c+ cells from middle-aged and young mice at gene level. This experiment provided insight into the different genes that plays roles in inflammation, immune response and mainly arachidonic acid cascade that are differentiall expressed in CD11c+ cells from middle aged and young mice.
Project description:Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques. Here, aging-associated early changes in transcriptome of SNpc were investigated comparing late middle-aged (18 months old) to young (2 months old) mice. Three age groups of C57 wild type mice were used in microarray analysis: young (2 months old), middle aged (10 months old), and late-middle aged (18 months old) mice. Four replicates were included in each age group and each replicate was pooled from 4 mice (4 mice/replicate x 4 replicates x 3 age groups). Total RNA was isolated from SNpc for hybridization on Affymetrix microarrays.
Project description:Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data show that from adolescence through middle age, cancer incidence increases with age. This effect is commonly attributed to a lifetime accumulation of cellular, particularly DNA, damage. However, during middle-age, the incidence begins to decelerate and, for many tumor sites, it actually decreases at sufficiently advanced ages. We investigated if the observed deceleration and potential decrease in incidence could be attributed to a decreased capacity of older hosts to support tumor progression, and whether HZE (high atomic number (Z), high energy (E)) radiation differentially modulates tumor progression in young versus middle-age hosts, issues relevant to estimating carcinogenesis risk for astronauts. Lewis lung carcinoma (LLC) cells were injected into syngeneic mice (143 and 551 days old), which were then subject to whole-body 56Fe irradiation (1GeV/amu). Three findings emerged: 1) among unirradiated animals, substantial inhibition of tumor progression and significantly decreased tumor growth rates were seen for middle-aged mice compared to young mice; 2) whole-body 56Fe irradiation (1GeV/amu) inhibited tumor progression in both young and in middle-aged mice (with greater suppression seen in case of young animals), with little effect on tumor growth rates; and 3) 56Fe irradiation (1GeV/amu) suppressed tumor progression in young mice, to a degree not significantly different than transiting from young to middle-aged. Thus, 56Fe irradiation (1GeV/amu) acted similar to aging with respect to tumor progression. We further investigated the molecular underpinnings driving the radiation modulation of tumor dynamics in young and middle-aged mice. Through global gene expression analysis, the key players, FASN, AKT1, and the CXCL12/CXCR4 complex, were determined to be contributory. In sum, these findings demonstrate a reduced capacity of middle-aged hosts to support the progression phase of carcinogenesis and identify molecular factors contributory to HZE radiation modulation of tumor progression as a function of age. For genome-wide expression profiling of tumor tissue, Mouse WG-6 BeadArray chips (Illumina, San Diego, CA) were used. Total RNA was amplified with the Ambion Illumina TotalPrep Amplification Kit (Ambion, Austin, TX) and labeled from all replicate biological samples for each condition. The number of tumor sample replicates used from each condition is as follows: 10 samples from young unirradiated mice, 8 samples from young irradiated mice, 7 samples from middle-aged unirradiated mice, 5 samples from middle-aged irradiated mice. Total RNA was isolated and purified using Trizol (Invitrogen) or RNeasy (Qiagen), quantified and qualified using Agilent Bioanalyzer (Agilent) and samples were deemed suitable for amplification and hybridization if they had O.D. 260/280 = 1.7 - 2.1, 28s/18s = 2:1, RIN (RNA integrity number) >7. Total RNA of 500ng per sample was amplified using Ambion TotalPrep (Ambion), and 1.5µg of the product was loaded onto the chips. Following hybridization at 55C, the chips were washed and then scanned using the Illumina iScan (Illumina), and the data were analyzed using GenomeStudio (Illumina). Data were first analyzed for gene expression and then culled for present genes (genes that meet the criteria of detection p-value < 0.05). Expression above background was included in an expressed genes working data set for further analyses. Rank variant normalization was applied to the data before extensive analysis. Differential gene expression analysis was used to compare to the reference group, young unirradiated mice, and genes were then evaluated and validated.
Project description:Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. However, ventral tegmental area (VTA), a region adjacent to SNpc, is less affected in PD. Until now, molecular mechanisms behind VTA aging have not been fully investigated using high throughput techniques. Here, aging-associated early changes in transcriptome of VTA were investigated comparing late middle-aged (18 months old) to young (2 months old) mice. Three age groups of C57 wild type mice were used in microarray analysis: young (2 months old), middle aged (10 months old), and late-middle aged (18 months old) mice. Four replicates were included in each age group and each replicate was pooled from 5 mice (5 mice/replicate x 4 replicates x 3 age groups). Total RNA was isolated from VTA for hybridization on Affymetrix microarrays.
Project description:Aging is believed to be the result of alterations of protein expression and accumulation of changes in biomolecules. Although there are numerous reports demonstrating changes in protein expression in brain during aging, only few of them describe global changes in the protein level. Here, we present a deepest quantitative proteomic analysis of three brain regions, hippocampus, cortex and cerebellum, in mice aged 1 and 12 months, using the total protein approach technique. In all the brain regions, both in young and in middle-aged animals, we identified over 6,700 proteins. We found that although the total protein expression in middle-aged brain structures is practically unaffected by aging, there are significant differences between young adult and middle-aged mice in the expression of some receptors and signaling cascade proteins proven to be significant for learning and memory formation. Our analysis demonstrates that hippocampus is the most unstable structure during natural aging and that the first symptoms of weakening of neuronal plasticity may be observed on protein level in middle-aged animals.
Project description:Here we characterized and compared differential gene expression from diabetic and normoglycemic NOD mice and from aged and young-adults Balb/c mice. Total RNA from NOD diabetic (3 weeks with glicemia over 500mg/dl) and normoglycemic NOD mice from the same age was used. To compare the effects of aging in genomic expression, total RNA from young-adult Balb/c (9 weeks old) and middle-aged Balb/c (47 weeks old) were used.