Project description:Nitric oxide (NO) regulated pulmonary vascular function and structure, in part, via its effect on gene expression. We used microarrays to determine the up- and downregulated genes in rat pulmonary artery smooth muscle cells exposed to the NO donor S-nitrosoglutathione (GSNO) for 1, 2, and 4 hours.
Project description:To further study the transcriptome of THP-1 human monocytes after exposure to of S-nitrosoglutathione (GSNO), we investigate whole genome microarray expression to identify genes regulated by exposure to GSNO (1.4 or 6 µM).
Project description:To further study the transcriptome of THP-1 human monocytes after exposure to S-Nitrosoglutathione (GSNO), we investigate whole genome microarray expression to identify genes regulated by exposure or not to GSNO. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of GSNO-loaded ENP.
Project description:To further study the transcriptome of Caco-2 human colon epithelial-like cells after exposure to S-nitrosoglutathione (GSNO, 1.4 μM), or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO) we investigate whole genome microarray to identify genes regulates by exposure or not to GSNO (1.4 μM) or Eudragit RL PO polymeric nanoparticles (NP-ERL, 50 μg/mL) or GSNO loaded nanoparticles (NP-GSNO, 50 μg/mL corresponding to (1.4 μM GSNO).
Project description:DNA microarray analysis was employed to investigate the transcriptome response to nitrosative stress in a non-denitrifying facultative photosynthetic bacterium Rhodobacter sphaeroides 2.4.1. We focused on the role played by a nitric oxide-response transcriptional regulator NnrR in the response. The transcriptome profiles of R. sphaeroides 2.4.1 and its nnrR mutant before and after exposure to nitrosating agents S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP) under semiaerobic conditions were analyzed.
Project description:To further study the transcriptome of THP-1 human monocytes after exposure to of S-nitrosoglutathione (GSNO), we investigate whole genome microarray expression to identify genes regulated by exposure to GSNO (1.4 or 6 µM). Changes in gene expression in THP-1 cells incubated without (control) or with (1.4 or 6 µM) of GSNO for 4 h were measured. Four biological replicates were performed as controls: C1; C2; C3; C4. Four biological replicates were performed in 1,4 or 6 µM GSNO-exposed cells: G1; G2; G3; G4 and G5; G6; G7; G8; respectively.
Project description:Investigation of RBPMS role in post-transcriptional control of mRNAs in rat PAC1 pulmonary artery smooth muscle cells (SMCs). PolyA mRNA-Seq was carried out after RBPMS knockdown in differentiated PAC1 cells and after inducible RBPMS-A overexpression in dedifferentiated (proliferative) PAC1 cells.
Project description:To further study the transcriptome of THP-1 human monocytes after exposure to S-Nitrosoglutathione (GSNO), we investigate whole genome microarray expression to identify genes regulated by exposure or not to GSNO. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of GSNO-loaded ENP. Changes in gene expression in THP-1 cells incubated without (control) or with 50 uM GSNO for 4 h, were measured. Five biological replicates were performed as controls: F_01; F_07; F_13; S_01; S_02. Four biological replicates were performed in GSNO exposed cells: S_13; S_14; S_15; S_16. Changes in gene expression in THP-1 cells incubated without (control) or with 50 ug / mL of GSNO-loaded ENPs (300 nm) for 4 h were measured. Five biological replicates were performed as controls: F_01; F_07; F_13; S_01; S_02. Three biological replicates were performed in 50 ug / mL of GSNO-loaded ENP exposed cells: S_06; S_07; S_08. Changes in gene expression in THP-1 cells incubated without (control) or with 200 ug / mL of empty ENPs (300 nm) for 4 h were measured. Five biological replicates were performed as controls: F_01; F_07; F_13; S_01; S_02. Three biological replicates were performed in 200 ug / mL of empty ENP exposed cells: S_17; S_19; S_20. Changes in gene expression in THP-1 cells incubated without (control) or with 50 ug / mL of GSNO-loaded ENPs (300 nm) for 24 h were measured. Five biological replicates were performed as controls: F_04; F_10; F_16; S_03; S_04. Four biological replicates were performed in 50 ug / mL of GSNO-loaded ENP exposed cells: S_09; S_10; S_11; S_12. Changes in gene expression in THP-1 cells incubated without (control) or with 50 ug / mL of empty ENPs (300 nm) for 24 h were measured. Five biological replicates were performed as controls: F_04; F_10; F_16; S_03; S_04. Three biological replicates were performed in 50 ug / mL of empty ENP exposed cells: F_05; F_11; F_17. Changes in gene expression in THP-1 cells incubated without (control) or with 50 ug / mL of empty ENPs (300 nm) for 4 h were measured. Five biological replicates were performed as controls: F_01; F_07; F_13; S_01; S_02. Three biological replicates were performed in 50 ug / mL of empty ENP exposed cells: F_02; F_08; F_14. Changes in gene expression in THP-1 cells incubated without (control) or with 200 ug / mL of GSNO-loaded ENPs (300 nm) for 4 h were measured. Five biological replicates were performed as controls: F_01; F_07; F_13; S_01; S_02. Four biological replicates were performed in 200 ug / mL of GSNO-loaded ENP exposed cells: S_21; S_22; S_23; S_24.
Project description:To explore the effect of SMN protein on alternative splicing of multiple genes in human pulmonary artery smooth muscle cells (HPASMCs), we used shRNA specifically against the SMN to knock down the expression of SMN protein.Human primary pulmonary artery smooth muscle cells (hPASMCs) of donors were obtained from China Center for Type Culture Collection (Wuhan, Hubei, China).