Project description:Purpose: Investigate genes associated with Phn7.1, a major QTL influencing partial resistance to the soil-borne pathogen Phytophthora nicotianae in tobacco. Methods: Resistant and susceptible tobacco near isogenic lines with and without Phn7.1 QTL were subjected to the inoculation with Phytophthora nicotianae suspension and suspension buffer without pathogen as control followed by sample collection at 42 hour past inoculation for RNA-seq analysis. Results: Revealed gene expression profiles associated disease resistance and susceptiblilty.
2021-09-14 | GSE168854 | GEO
Project description:Phytophthora nicotianae Cytochrome c oxidase subunit 1 (COX1) region partial
| PRJNA1219312 | ENA
Project description:Microcystis (internal transcribed spacer) ITS region sequencing.
Project description:During transcription the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region transcribed by Pol I and over the 5S rDNA transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5?-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on highly expressed protein-coding genes in the wild-type, notably over the second exon of spliced ribosomal protein genes. ChIP-seq of RNA-DNA hybrids using antibody S9.6
Project description:Repetitive DNA sequences within eukaryotic heterochromatin are poorly transcribed and replicate late in S-phase. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). Despite the widespread association between transcription and replication, it remains unclear how transcription might impinge on replication, or vice versa. Here we show that, when silencing of an RNA polymerase II (RNA Pol II)-transcribed non-coding RNA at the rDNA is disrupted by SIR2 deletion, RNA polymerase pushes and thereby relocalizes replicative Mcm2-7 helicases away from their loading sites to an adjacent region with low nucleosome occupancy, and this relocalization is associated with increased rDNA origin efficiency. Our results suggest a model in which two of the major defining features of heterochromatin, transcriptional silencing and late replication, are mechanistically linked through suppression of polymerase-mediated displacement of replication initiation complexes.