Project description:Purpose: Investigate genes associated with Phn7.1, a major QTL influencing partial resistance to the soil-borne pathogen Phytophthora nicotianae in tobacco. Methods: Resistant and susceptible tobacco near isogenic lines with and without Phn7.1 QTL were subjected to the inoculation with Phytophthora nicotianae suspension and suspension buffer without pathogen as control followed by sample collection at 42 hour past inoculation for RNA-seq analysis. Results: Revealed gene expression profiles associated disease resistance and susceptiblilty.
2021-09-14 | GSE168854 | GEO
Project description:Odontotermes giriensis isolate Medog CountyXZMT2024072602 cytochrome c oxidase subunit I (COX1) gene, partial cds mitochondrial
| PRJNA1146562 | ENA
Project description:Phytophthora nicotianae rDNA internal transcribed spacers (ITS) region partial
| PRJNA1219296 | ENA
Project description:Cyanea nozakii cytochrome c oxidase subunit I (COI) gene
Project description:Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates. We characterized the proteome of COX11, COX19 and PET191 by AP + LC-MS-MS
Project description:Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates. We characterized the proteome of COX11, COX19 and PET191 by AP + LC-MS-MS