ABSTRACT: Prospective genomic surveillance reveals insights into antimicrobial resistance and lineage diversity of uropathogen in older adults in Queensland
Project description:Background: Periods of inactivity experienced by older adults induce nutrient anabolic resistance creating a cascade of skeletal muscle transcriptional and translational aberrations contributing to muscle dysfunction. Objective: To identify how inactivity alters leucine-stimulated translation of molecules and pathways within the skeletal muscle of older adults.
Project description:The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre‐)frail older adults. Additionally, we examine the effect of resistance‐type exercise training on the muscle transcriptome in healthy older subjects and (pre‐)frail older adults. Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow‐up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance‐type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism, and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = −0.73). Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance‐type exercise training. Some age‐related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance‐type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re‐innervation in ageing muscle.
Project description:Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training. Keywords: resistance exercise, muscle, aging
2007-07-16 | GSE8479 | GEO
Project description:Global surveillance of antimicrobial resistance
Project description:Shatavari is a herbal dietary supplement that may increase skeletal muscle strength in younger and older adults. Shatavari contains compounds with both estradiol-like and antioxidant properties, which could enhance muscle function. Postmenopausal women may derive the greatest benefit, as estrogen deficiency adversely impacts skeletal muscle function. However, mechanistic insights are limited and the effects of shatavari on muscle function require further characterization. In this randomised, double-blind trial, 17 young (23 ±5yr) and 22 older (63±5yr) women completed an eight-week leg resistance training programme. They consumed either a placebo or shatavari (1000mg/d, equivalent to 26,500 mg/d fresh weight) supplement throughout. Pre and post training, measures of leg strength, neuromuscular function and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged VL proteomic analyses were performed. Additionally, resistance training (RT) is the gold standard intervention for ameliorating sarcopenia. Outstanding mechanistic questions remain regarding the malleability of the molecular determinants of skeletal muscle function in older age. Discovery proteomics can expand such knowledge. We further aimed to compare the effect of RT on the skeletal muscle proteome and neuromuscular function (NMF) in older and younger women.
Project description:Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal controlled human infection by analysing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of CD8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
2024-07-12 | GSE261277 | GEO
Project description:Gut Microbiota in Older Adults