Project description:Expression data from LEOPARD Syndrome-iPS clones, BJ-iPS cells and parental Fibroblasts 9 samples in total are analyzed. Among 22011 genes in expression data, there are 3657 genes with at least 2 fold expression change between the average of the three fibroblast lines versus all of the iPS lines/HES samples. A heatmap can be generated for the expression levels for the 3657 genes and 9 samples.
Project description:7-dehydrocholesterol reductase catalyzes the reduction of 7-dehydrocholesterol to cholesterol. In Smith-Lemli-Opitz syndrome, mutations in DHCR7 prevents this conversion. We have found iPS cells derived from SLOS patients exhibit accelerated differentiation under cholesterol poor conditions. In this dataset, we include expression data obtained from comparision of a control iPS cell line (BJ) and a SLOS iPS cell line (A2). Cell line gene expression was compared in cholesterol rich conditions where the SLOS phenotype is suppressed. Cholesterol deficient culture of control and SLOS iPS cells demonstrated enhanced differentiation of SLOS cells over 7 days. These data are used to obtain 308 genes that are differentially expressed upon cholesterol deficient culture. time-course expression data obtained from control and SLOS patient iPS cells after transfer from cholesterol rich to cholesterol deficient culture. 48 total RNA samples were isolated and hybridized on Affymetrix arrays. We generated the following pairwise comparisons using Partek: BJ 0hr vs A2 0hr; BJ 2Day vs A2 2Day; BJ 3Day vs A2 3Day; BJ 4Day vs A2 4Day; BJ 5Day vs A2 5Day; BJ 7Day vs A2 7Day. Genes with an FDR≤10% and a fold-change ≥3 were identified as significantly different. We also performed pairwise comparison of BJ and A2 samples within each cell line between subsequent isolations (i.e. BJ 0hr vs BJ 2Day; A2 3Day vs A2 4Day; etc.)
Project description:Copy number variation analysis between BJ cells and BJ cells derived iPS cells which were established by using non-transmissible measles virus vector
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:We generated iPS cells with a synthetic self-replicative RNA that expresses four independent reprogramming factors (OCT4, KLF4, SOX2 and either c-MYC or GLIS1). We performed whole genome RNA sequencing (RNA-seq) of iPS cell clones, parental BJ and HUES9 ES cell controls. All iPS cell clones analyzed by RNA-seq showed unsupervised hierarchical clustering and expression signatures characteristic of human HUES9 ES cells that were highly divergent from parental human fibroblasts.
Project description:Gene expression analyis of two neonatal fibroblasts (BJ and HFF1), one adult dermal fibroblasts (NFH2), two BJ-derived human iPSCs (iB4 and iB5), two HFF1-derived iPSCs (iPS 2 and iPS4), four NFH2-derived iPSCs (OiPS3, OiPS6, OiPS8, OiPS16), one amniotic fluid cells and three derived iPSCs (lines 4, 5, 6, 10, and 41), two human ES cells (H1 and H9), neonatal fibroblasts transduced with the four retroviral factors (OKSM) after 24h, 48h, and 72h, neonatal fibroblasts treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts transduced with four factors and treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts knocked down for HIF1A (HIF1-KD) and for a scrambled sequence (SCR-KD)
Project description:We generated iPS cells with a synthetic self-replicative RNA that expresses four independent reprogramming factors (OCT4, KLF4, SOX2 and either c-MYC or GLIS1). We performed whole genome RNA sequencing (RNA-seq) of iPS cell clones, parental BJ and HUES9 ES cell controls. All iPS cell clones analyzed by RNA-seq showed unsupervised hierarchical clustering and expression signatures characteristic of human HUES9 ES cells that were highly divergent from parental human fibroblasts. RNA-seq in two OKS-iM iPS clones (generated from OCT4, KLF4, SOX2 and cMYC expressing RNA replicon), two OKS-iG clones (generated from OCT4, KLF4, SOX2 and GLIS1 expressing RNA replicon), HUES9 and BJ cells.