Project description:Astrocytoma, oligodendroglioma, oligoastrocytoma, and ependymoma are the main histologic subtypes of glioma. The molecular character of these subtypes has profound implications for understanding their causes and treatment. We describe the epigenetic landscape of these tumor types using novel DNA methylation profiling tools. There is a robust association of methylation profile with tumor histology and IDH1 mutation status. Furthermore, tumors with IDH1 mutation independently predict a tumor hypermethylator phenotype, histology, TP53 mutation status, patient age, and survival. Integrating tumor epigenetic and genetic alterations, this work provides a critical step toward better defining the somatic nature of glioma which will have great potential to impact clinical approaches to disease. This work provides an important step forward in classification of malignant brain tumors using DNA methylation profiling, integrating knowledge regarding IDH1 mutation in gliomas. The epigenetic homogeneity of the IDH1 mutant subclass despite histologic diversity implies that IDH1 mutation is a “driver” or functional determinant of a distinct DNA methylation phenotype, suggesting a novel role for an altered metabolic profile in the brain. This association occurs across histologic subtypes and demonstrates a clear relationship between genetic alteration and epigenetic profile. Fresh frozen tumor tissues were obtained from the University of California San Francisco (UCSF) Brain Tumor Research Center tissue bank with appropriate institutional review board approval. Tumors were diagnosed between 1990 and 2003. Tumor samples were defined as secondary GBM if the patients had prior histological diagnosis of a low-grade glioma. Tumors had previously been reviewed by UCSF neuropathologists to assign histologic subtype and grade. Normal brain tissue samples were from cancer-free patients who underwent temporal lobe resection as treatment for epilepsy at UCSF.
Project description:The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for survival of glioma patients. This resulted in many studies investigating the effects of this mutation, including those on energy metabolism. This led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes and investigate the therapeutic value of inhibitors of IDH1 R132H-associated metabolic pathways, appropriate glioma models are required that mimic in vivo metabolism as good as possible. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma culture samples. Analysis of orthotopic glioma xenograft samples with and without the IDH1 mutation revealed metabolic profiles that more closely resembled clinical counterparts. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as 3-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
Project description:The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for survival of glioma patients. This resulted in many studies investigating the effects of this mutation, including those on energy metabolism. This led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes and investigate the therapeutic value of inhibitors of IDH1 R132H-associated metabolic pathways, appropriate glioma models are required that mimic in vivo metabolism as good as possible. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma culture samples. Analysis of orthotopic glioma xenograft samples with and without the IDH1 mutation revealed metabolic profiles that more closely resembled clinical counterparts. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as 3-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
Project description:Astrocytoma, oligodendroglioma, oligoastrocytoma, and ependymoma are the main histologic subtypes of glioma. The molecular character of these subtypes has profound implications for understanding their causes and treatment. We describe the epigenetic landscape of these tumor types using novel DNA methylation profiling tools. There is a robust association of methylation profile with tumor histology and IDH1 mutation status. Furthermore, tumors with IDH1 mutation independently predict a tumor hypermethylator phenotype, histology, TP53 mutation status, patient age, and survival. Integrating tumor epigenetic and genetic alterations, this work provides a critical step toward better defining the somatic nature of glioma which will have great potential to impact clinical approaches to disease. This work provides an important step forward in classification of malignant brain tumors using DNA methylation profiling, integrating knowledge regarding IDH1 mutation in gliomas. The epigenetic homogeneity of the IDH1 mutant subclass despite histologic diversity implies that IDH1 mutation is a “driver” or functional determinant of a distinct DNA methylation phenotype, suggesting a novel role for an altered metabolic profile in the brain. This association occurs across histologic subtypes and demonstrates a clear relationship between genetic alteration and epigenetic profile.
Project description:The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA-cycle are associated with IDH1 mut. Here we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, in order to map changes in protein levels associated with this mutation. We observed significant changes in the enzyme abundance associated with aerobic glycolysis, glutamate metabolism and the TCA-cycle in IDH1 mut gliomas. Specifically, the enzymes involved in the metabolism of glutamate, lactate and enzymes involved in the conversion of α-ketoglutarate were increased in IDH1 mut gliomas. In addition, the bicarbonate transporter (SLC4A4) was increased in IDH1 mut gliomas, supporting the idea that a mechanism preventing intracellular acidification is active. We also found that enzymes that convert proline, valine, leucine and isoleucine into glutamate were increased in IDH1 mut glioma. We conclude that in IDH1 mut glioma metabolism is rewired (increased input of lactate and glutamate) to preserve TCA cycle activity in IDH1 mut gliomas.
Project description:The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA-cycle are associated with IDH1 mut. Here we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, in order to map changes in protein levels associated with this mutation. We observed significant changes in the enzyme abundance associated with aerobic glycolysis, glutamate metabolism and the TCA-cycle in IDH1 mut gliomas. Specifically, the enzymes involved in the metabolism of glutamate, lactate and enzymes involved in the conversion of α-ketoglutarate were increased in IDH1 mut gliomas. In addition, the bicarbonate transporter (SLC4A4) was increased in IDH1 mut gliomas, supporting the idea that a mechanism preventing intracellular acidification is active. We also found that enzymes that convert proline, valine, leucine and isoleucine into glutamate were increased in IDH1 mut glioma. We conclude that in IDH1 mut glioma metabolism is rewired (increased input of lactate and glutamate) to preserve TCA cycle activity in IDH1 mut gliomas.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:The discovery of the oncometabolite 2-hydroxyglutarate in isocitrate dehydrogenase 1-mutated (IDH1-mutated) tumor entities affirmed the role of metabolism in cancer. However, large databases with tissue metabolites that are modulated by IDH1 mutation remain an area of development. Here, we present an unprecedented and valuable resource for tissue metabolites in diffuse glioma and their modulations by IDH1 mutation, histology, and tumor treatments in 101 tissue samples from 73 diffuse glioma patients (24 astrocytoma, 17 oligodendroglioma, 32 glioblastoma), investigated by NMR-based metabolomics and supported by RNA-Seq. We discovered comparison-specific metabolites and pathways modulated by IDH1 (IDH1 mutation status cohort) and tumor entity. The Longitudinal investigation cohort provides metabolic profiles of untreated and corresponding treated glioma samples at first progression. Most interestingly, univariate and multivariate cox regressions and Kaplan-Meier analyses revealed that tissue metabolites correlate with progression-free and overall survival. Thus, this study introduces potentially novel candidate prognostic and surrogate metabolite biomarkers for future prospective clinical studies, aiming at further refining patient stratification in diffuse glioma. Furthermore, our data will facilitate the generation of so-far-unanticipated hypotheses for experimental studies to advance our molecular understanding of glioma biology.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:The cytosolic NADP+-dependent isocitrate dehydrogenase IDH1 is frequently mutated in human cancers. Recent studies have shown that IDH1 mutant primary glioblastomas (GBM) and acute myeloid leukemias (AML) display robust association with CpG island methylator phenotype (CIMP). Such observations bring into question whether IDH1 mutations directly contribute to the development of CIMP or if the hypermethylation phenotype precedes acquisition of IDH1 mutations. To reveal the effects of IDH1 mutations on DNA methylation and gene expression, we introduced the most frequently observed IDH1 mutation, R132H, into a human cancer cell line through gene targeting. We profiled changes in methylation at over 27,000 CpG dinucleotides spanning 14,475 unique gene regions and characterized genome-wide gene expression alterations resulting from IDH1R132H knockin. We observed consistent changes in both DNA methylation and gene expression when comparing two independent IDH1R132H knockin clones to their wild-type parent, and report hypermethylation of over 2,000 loci, the majority of which contained preexisting methylation in IDH1WT parental cells. These loci exhibit the same trend in primary TCGA glioblastoma tumors with mutant IDH1 as compared to those with wild-type IDH1 and have significant overlap with genes hypermethylated in glioma-CIMP+ tumors. Furthermore, we identify specific DNA methylation and gene expression alterations which correlate with IDH1 mutations in our cell-line model as well as primary glioblastomas, including hypermethylation and transcriptional silencing of RBP1. The presented data provide insight on epigenetic alterations induced by IDH1 mutations and support a contributory role for IDH1 mutants in regulation of DNA methylation and gene expression in human cancer cells. Comparison of IDH1 R132H and wild-type HCT116 cells as well as HOG cells overexpressing either wild-type IDH1 or IDH1 R132H