Project description:Numerous studies have established a critical role for BMP signaling in skeletal development. In the developing axial skeleton, sequential SHH and BMP signals are required for specification of a chondrogenic fate in somitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals we examined BMP action in mesenchymal populations derived from the early murine limb bud (~ E10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal (EL) cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in older cell populations. To better understand the molecular basis of disparate BMP action in these various populations, gene expression profiling with Affymetrix microarrays was employed to identify BMP-regulated genes. These analyses showed that BMPs induced a distinct gene expression pattern in the EL cultures versus later mesenchymal limb populations (IM and LT).
Project description:Numerous studies have established a critical role for BMP signaling in skeletal development. In the developing axial skeleton, sequential SHH and BMP signals are required for specification of a chondrogenic fate in somitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals we examined BMP action in mesenchymal populations derived from the early murine limb bud (~ E10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal (EL) cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in older cell populations. To better understand the molecular basis of disparate BMP action in these various populations, gene expression profiling with Affymetrix microarrays was employed to identify BMP-regulated genes. These analyses showed that BMPs induced a distinct gene expression pattern in the EL cultures versus later mesenchymal limb populations (IM and LT). Mouse embryos at gestational age E10.5 were collected and various portions of the limb were micro-dissected. These led to the generation of three populations of cells, early (EL) limb mesenchymal cells from the distal half of the hind limb, an intermediate (IM) population derived from the distal 1/3 of the fore limb, and a later (LT) population from the proximal 2/3 of the fore limb. Mesenchymal cells were isolated and cultured with and without BMP4 treatment. RNA was extracted from cultures at either Day 0,1 or 2, labelled and hybridized to Affymetrix 430 2.0 microarrays. For each time point, RNA was collected from two biological replicates for each treatment condition.
Project description:We set out to characterize the gene expression changes which take place during chondrogenesis in the developing mouse limb. RNA derived from pre-condensed mesenchyme, mesenchymal condensations, and cartilage anlagen representing the earliest stages of tibial and fibular development was analysed by whole genome microarray analysis, and revealed 931 genes differentially expressed in these tissues. Among them were 892 genes not previously identified during the initation of chondrogenesis, including members of the Bmp, Wnt, Gdf, Sox, and Fox gene families. These microarray data were validated by qPCR, in situ hybridisation, and analysis of numerous genes already implicated in chondrogenesis in the scientific literature.
Project description:We set out to characterize the gene expression changes which take place during chondrogenesis in the developing mouse limb. RNA derived from pre-condensed mesenchyme, mesenchymal condensations, and cartilage anlagen representing the earliest stages of tibial and fibular development was analysed by whole genome microarray analysis, and revealed 931 genes differentially expressed in these tissues. Among them were 892 genes not previously identified during the initation of chondrogenesis, including members of the Bmp, Wnt, Gdf, Sox, and Fox gene families. These microarray data were validated by qPCR, in situ hybridisation, and analysis of numerous genes already implicated in chondrogenesis in the scientific literature. 231 sections from a total of four 11.5dpc mouse hind limbs, three 12.5dpc mouse hind limbs, and four 13.5dpc mouse hind limbs (all from separate mice) were microdissected, and tissues from each time point were pooled. Thus, this experiment consisted of one replicate only.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:The importance of unanchored Ub in innate immunity has been shown only for a limited number of unanchored Ub-interactors. We investigated what additional cellular factors interact with unanchored Ub and whether unanchored Ub plays a broader role in innate immunity. To identify unanchored Ub-interacting factors from murine lungs, we used His-tagged recombinant poly-Ub chains as bait. These chains were mixed with lung tissue lysates and protein complexes were isolated with Ni-NTA beads. Sample elutions were subjected to mass spectrometry (LC-MSMS) analysis.
Project description:Heart valve formation initiates when endothelial cells of the heart transform into mesenchyme and populate the cardiac cushions. The transcription factor, SOX9, is highly expressed in the cardiac cushion mesenchyme, and is essential for heart valve development. Loss of Sox9 in mouse cardiac cushion mesenchyme alters cell proliferation, embryonic survival, and disrupts valve formation. Despite this important role, little is known regarding how SOX9 regulates heart valve formation or its transcriptional targets. Therefore, we mapped putative SOX9 binding sites by ChIP-Seq in embryonic day (E) 12.5 heart valves, a stage at which the valve mesenchyme is actively proliferating and initiating differentiation. Embryonic heart valves have been shown to express a high number of genes that are associated with chondrogenesis, including several extracellular matrix proteins and transcription factors that regulate chondrogenesis. Consequently, we compared regions of putative SOX9 DNA-binding between E12.5 heart valves and E12.5 limb buds. We identified context-dependent and contextâindependent SOX9 interacting regions throughout the genome. Analysis of context-independent SOX9 binding suggests an extensive role for SOX9 across tissues in regulating proliferation-associated genes including key components of the AP-1 complex. Integrative analysis of tissue-specific SOX9 interacting regions and gene expression profiles on Sox9-deficient heart valves demonstrated that SOX9 controls the expression of several transcription factors with previously identified roles in heart valve development, including Twist1, Sox4, Mecom/Evi1 and Pitx2. Together, our data identifies SOX9 coordinated transcriptional hierarchies that control cell proliferation and differentiation during valve formation. Examination of SOX9 binding sites in E12.5 atrioventricular canal (AVC) and E12.5 embryonic limb and mRNA expression profiling in E12.5 WT and Sox9 mutant AVCs, in duplicate.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.