Project description:Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMR at human chromosome 2 near the imprinted ZDBF2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from sperm. To analyze whether or not the GPR1-ZDBF2 DMR is conserved in human genome, methylation analysis of human sperm sample was performed using MeDIP and genome tiling array.
Project description:Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMRs at mouse chromosome 1 near the imprinted Zdbf2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from parthenogenetic (PG)- and androgenetic (AG)-derived cells and sperm. To identify novel DMRs, genome-wide methylation analysis of three samples were performed using MeDIP and whole genome tiling array.
Project description:Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMR at human chromosome 2 near the imprinted ZDBF2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from sperm.
Project description:Genomic imprinting describes the expression of a subset of mammalian genes from one parental chromosome. The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. We identified the paternally methylated DMRs at mouse chromosome 1 near the imprinted Zdbf2 gene using a methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method applied to DNA from parthenogenetic (PG)- and androgenetic (AG)-derived cells and sperm.
Project description:Utilizing reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we have analyzed ~0.1% of CpG dinucleotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium HumanMethylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with previously characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs: a maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon, and a paternally methylated region located between maternally expressed ZNF597 and NAT15 genes.
Project description:Utilizing reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we have analyzed ~0.1% of CpG dinucleotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium HumanMethylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with previously characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs: a maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon, and a paternally methylated region located between maternally expressed ZNF597 and NAT15 genes. We analyzed reciprocal genome-wide uniparental disomy samples (one maternal UPD and three paternal UPD samples) and six different normal somatic tissues derived from the three germinal layers (lymphocytes, buccal cells, placenta, brain, muscle, and fat) .
Project description:We devised a novel insertional mutagenesis approach based on lentiviral vectors to induce hepatocellular carcinoma in three mouse models and identified four novel cancer initiating genes. Two genes are the well characterized Braf and Sos1, while the other two are Fign, encoding an AAA ATPase whose functions are poorly understood, and the paternally expressed gene Rtl1 within the complex Dlk1-Dio3 imprinted region recently involved in stemness. Interestingly, Fign and Braf regulate the expression of the maternal genes of the Dlk1-Dio3 imprinted region, suggesting that both maternally and paternally expressed genes of this region play a role in hepatocarcinogenesis. Moreover, all the genes identified are upregulated and/or amplified/deleted in human hepatocellular carcinoma and play a relevant role in human hepatocarcinogenesis, as their expression levels and/or transcriptional signatures induced by their deregulation predict a different clinical outcome in hepatocellular carcinoma patients. Primary human hepatocytes were transduced with SINLV.ET.trBRAF, SINLV.PGK.GFP or mock treated. RNA was collected at 5 different timepoints post-transduction: 24h, 36h, 48h, 72h, 144h (6d). Each experimental point was done in triplicate (A,B,C)
Project description:Imprinted genes are critical for normal human growth and neurodevelopment. We developed a strategy to identify new DNA differentially methylated regions (DMRs), a hallmark of imprinted genes. Using genome-wide methylation profiling, candidate DMRs were selected by identifying CpGs with putative allelic differential methylation in normal biparental tissues. In parallel, we looked for parent of origin-specific DNA methylation patterns in paternally derived human androgenetic complete hydatidiform mole (AnCHM), and maternally derived mature cystic ovarian teratoma (MCT). Using this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597. Most importantly, novel candidate imprinted genes were identified. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was validated by methylation analyses in humans. Further validation in mouse embryos showed that Axl was expressed preferentially from the maternal allele in a DNA methylation–dependent manner. We have analyzed 3 androgenetic complete hydatidiform mole (AnCHM), 16 white blood cell (WBC), 1 mature cystic ovarian teratoma (MCT), 5 placenta, and 1 lymphoblastoid cell line paternal UPD4 sample
Project description:We devised a novel insertional mutagenesis approach based on lentiviral vectors to induce hepatocellular carcinoma in three mouse models and identified four novel cancer initiating genes. Two genes are the well characterized Braf and Sos1, while the other two are Fign, encoding an AAA ATPase whose functions are poorly understood, and the paternally expressed gene Rtl1 within the complex Dlk1-Dio3 imprinted region recently involved in stemness. Interestingly, Fign and Braf regulate the expression of the maternal genes of the Dlk1-Dio3 imprinted region, suggesting that both maternally and paternally expressed genes of this region play a role in hepatocarcinogenesis. Moreover, all the genes identified are upregulated and/or amplified/deleted in human hepatocellular carcinoma and play a relevant role in human hepatocarcinogenesis, as their expression levels and/or transcriptional signatures induced by their deregulation predict a different clinical outcome in hepatocellular carcinoma patients.
Project description:H2A.B is a unique histone H2A variant that shares only 40 ~ 50 % sequence identity with canonical H2A. It has only been identified in mammals and has quickly evolved with remarkable sequence diversity among different species. H2A.B is ubiquitously expressed in most cells and tissues. It is mainly deposited in gene body region. The localization of H2A.B is associated with methylated CpG islands in mouse ES cells. H2A.B facilitates transcription elongation to go through methylated CpG islands in the gene bodies. One typical example is that H2A.B regulates transcription elongation at imprinted loci. We found H2A.B enriched in some methylated loci. Using ChIP-seq and MeDIP-seq, we test the correlation of H2A.B and DNA methylation.