Project description:Recent reports have emphasized the pitfalls of iPSC technology including the potential for immunogenicity of transplanted cells. It is serious safety-related concern for iPSC-based cell therapy. However, preclinical data supporting the safety and efficacy of iPSCs are also accumulating. To address the concern of immunogenicity of ESCs/iPSCs or ESCs/iPSCs-derived neurospheres, global gene expression profiles were compared between undifferentiated mouse ESCs (EB3 line), mouse iPSCs (38C2 line), and ESC/iPSC-derived neurosphere and mouse primary culture of neurosphere obtained from fetal mouse ganglionic eminence. Mouse adult sklin fibroblast was used as a control. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several origins. Keywords: Expression profiling by array
Project description:Recent reports have emphasized the pitfalls of iPSC technology including the potential for immunogenicity of transplanted cells. It is serious safety-related concern for iPSC-based cell therapy. However, preclinical data supporting the safety and efficacy of iPSCs are also accumulating. To address the concern of immunogenicity of ESCs/iPSCs or ESCs/iPSCs-derived neurospheres, global gene expression profiles were compared between undifferentiated mouse ESCs (EB3 line), mouse iPSCs (38C2 line), and ESC/iPSC-derived neurosphere and mouse primary culture of neurosphere obtained from fetal mouse ganglionic eminence. Mouse adult sklin fibroblast was used as a control. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several origins. Keywords: Expression profiling by array RNA extracted from neurospheres was hybridized to Affymetrix microarrays.
Project description:Transcriptional profiles by deep sequencing (RNA-seq) of in vivo-generated mouse iPSCs, in vitro-generated mouse iPSCs, and mouse ESCs
Project description:Dilated cardiomyopathy (DCM) is the leading cause of heart failure and transplantation worldwide. We used iPSCs to model this disease and compared gene expression change before and after gene therapy of cardiomyocytes derived from DCM-specific iPSCs. We used microarrays to detail the global gene expression of patient specific iPSCs, iPSC-derived cardiomyocytes and its response to gene therapy. Skin fibroblasts and iPSCs derived from a family exhibiting familial dilated cardiomyopathy and H7 human ESCs were subjected to RNA extraction and hybridization on Affymetrix microarrays.Global gene expression pattern were compared and analyzed. Cardiomyocytes derived from iPSCs generated from this DCM family were treated with or without adenoriral Serca2a and subjected to RNA extraction and hybridization on Affymetrix microarrays. Global gene expression pattern were compared and analyzed.
Project description:Klinefelter’s Syndrome (KS) is one of the common chromosome aneuploidy diseases in males with unexplained physiological mechanism. iPSCs, are similar to ESCs in terms of indefinitive self-renewal and pluripotency, provided an alternative choice for modeling disease to facilitate the disease research in vitro. We used microarray to detect the global reprogramming of KS and normal fibroblast cells to iPSCs. Also we used microarray to explore the possible molecular varieties between KS patient and normal person in the early development. Fibroblast cells from both normal person and KS patient were reprogrammed into iPSCs by ectopic expression of OCT4, SOX2, KLF4 and C-MYC. The expression profiles of normal and KS fibroblast cells, a line of normal iPSCs and two lines of KS iPSCs as well as a line of human ESCs were detected.
Project description:Leptin receptors (Lepr) are expressed by various types of stem cells including mesenchymal stem cells, hematopoietic stem cells, embryonic stem cells, and induced pluripotent stem cells. Leptin/lepr signaling is also a central regulator of metabolism. However, the role of Lepr in pluripotency, metabolic disease progression and growth development is still controversial and poorly understood. In the present study, we explored the Lepr function in disease progression, pluripotency and metabolism using day 14.5 mouse embryonic fibroblasts (MEFs) and their reprogrammed induced pluripotent stem cells (iPSCs) as model system. We successfully reprogrammed mouse embryonic fibroblasts into iPSCs from control and db/db (Lepr deficient) mice. Using a global quantitative proteomic approach, we identified key pathways regulating pluripotency, metabolic homeostasis and protein synthesis during fetal growth and development. The Lepr MEFs show abnormal metabolic abnormalities and mitochondrial dysfunction as compared to control MEFs, while Lepr iPSCs show upregulated elongated factor 4 e (eIF4e) protein synthesis pathway and altered Oct4 and Stat3 pathways which are involved in normal fetal growth development. Furthermore, chip analysis revealed that higher Stat3 binding on the promoter of eIF4e in Lepr iPSCs leads to higher protein synthesis in these cell types as compared to control iPSCs. Finally, point mutation corrected Lepr iPSCs using CRISPR/Cas9 gene editing method showed recovered pluripotency, metabolic and protein synthesis pathways. In conclusion, we have shown that Lepr signaling is involved in the regulation of the metabolic properties and key developmental pathways in MEFs and stemness of pluripotent stem cells. Disruption of Lepr signaling has been shown to involve in the pathophysiology of various diseases including obesity and diabetes. The generated MEFs and iPSCs in this present study provide valuable tools to explore the role of Lepr in the progression of obesity, diabetes and metabolic abnormalities, and to find the putative targets of Lepr signaling during the development of these diseases.
Project description:Conventional embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) derived from primates resemble mouse epiblast stem cells, raising an intriguing question regarding whether the naïve pluripotent state resembling mouse embryonic stem cells (mESCs) exists in primates and how to capture it in vitro. Here we identified several specific signaling modulators that are sufficient to generate rhesus monkey fibroblast-derived iPSCs with the features of naïve pluripotency in terms of growth properties, gene expression profiles, self-renewal signaling, X-reactivation and the potential to generate cross-species chimeric embryos. Interestingly, together with recent reports of naïve human pluripotent stem cells, our findings suggest several conserved signaling pathways shared with rodents and specific to primates, providing significant insights for acquiring naïve pluripotency from other mammal species. In addition, the derivation of rhesus monkey naïve iPSCs also provides a valuable cell source for use in preclinical research and disease modeling. mRNA expression analysis of 4 rhesus monkey naive iPSC lines and 2 primed iPSC lines were examed.
Project description:Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by the introduction of the transcription factors Oct4, Sox2, Klf4 and cMyc using various methods. Here, we describe a new approach for the derivation of murine iPSCs using a polycistronic non-viral inducible vector integrated into pseudo attP sites via the C31 integrase-mediated site-specific recombination and subsequent vector excision by Cre recombinase. The pluripotency of the derived iPSCs was proved by in vitro and in vivo tests. The derived transgene-free iPSCs reactivated the endogenous pluripotency genes like e.g. Oct4, Sox2 and Nanog and the global gene expression profiles of iPSCs lines are highly similar to ESCs and distinct from parental murine fibroblasts. We demonstrated the differentiation potential of iPSCs by generation cells of the three germ layers as well as we successfully created germline chimeric mice from transgene-free iPSCs. In this study, we presented an efficient method for the generation of transgene-free iPSCs using dual-recombinase technology. expression data of iPSCs/ESCs/MEFs
Project description:Nucleosome organization determines chromatin state, which subsequently controls genes expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it remains undetermined to what degree the re-established nucleosome organization resembles between induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs). Here, we generated genome-wide maps of nucleosomes in mouse ESCs and iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons show that nucleosome organization is nearly identical between ESCs and iPSCs regardless of the iPSCs’ tissue of origin. A distinct nucleosome occupancy pattern was observed at silent transcriptional units. Transcription factor binding sites possess characteristic nucleosomal architecture such that their access is governed under rotational setting and translational setting accordingly. Gene expression profiles further reveal that the transcriptional programs are highly correlated between iPSCs and ESCs. These findings indicate that nucleosome organizations can be accurately remodeled during nuclear reprogramming. Gene expression profiles of 5 cell lines with or without biological replicates