Project description:We characterized the insulin sensitivity and multi-tissue gene expression profiles of lean and insulin resistant, obese Zucker rats untreated or treated with one of four PPARγ ligands (pioglitazone, rosiglitazone, troglitazone, and AG035029). We analyzed the transcriptional profiles of adipose tissue, skeletal muscle, and liver from the rats and determined whether ligand insulin-sensitizing potency was related to ligand-induced alteration of functional pathways. Ligand treatments improved insulin sensitivity in obese rats, albeit to varying degrees. Male Zucker fatty (fa/fa) and lean (fa/+) rats (Charles River, Wilmington, MA) were received at 6 weeks of age. Fatty rats were weight-matched upon arrival and randomly divided into one of five experimental groups. The fatty rat groups varied by the type of chow they were fed - normal chow alone or with a PPARγ ligand admixture: normal chow (fatty control, FC), rosiglitazone-treated (Rosi), pioglitazone-treated (Pio), troglitazone-treated (Tro), or AG035029-treated (AG). Lean control (LC) rats were all fed normal chow. Rats groups were maintained on the diets for 21 days. Adipose tissue (epididymal), skeletal muscle (gastrocnemius), and liver were harvested from lean (LC) and insulin resistant, obese Zucker rats untreated (FC) or treated with one of four PPARγ ligands (pioglitazone [Pio], rosiglitazone [Rosi], troglitazone [Tro], and AG035029 [AG]).
Project description:We characterized the insulin sensitivity and multi-tissue gene expression profiles of lean and insulin resistant, obese Zucker rats untreated or treated with one of four PPARγ ligands (pioglitazone, rosiglitazone, troglitazone, and AG035029). We analyzed the transcriptional profiles of adipose tissue, skeletal muscle, and liver from the rats and determined whether ligand insulin-sensitizing potency was related to ligand-induced alteration of functional pathways. Ligand treatments improved insulin sensitivity in obese rats, albeit to varying degrees. Male Zucker fatty (fa/fa) and lean (fa/+) rats (Charles River, Wilmington, MA) were received at 6 weeks of age. Fatty rats were weight-matched upon arrival and randomly divided into one of five experimental groups. The fatty rat groups varied by the type of chow they were fed - normal chow alone or with a PPARγ ligand admixture: normal chow (fatty control, FC), rosiglitazone-treated (Rosi), pioglitazone-treated (Pio), troglitazone-treated (Tro), or AG035029-treated (AG). Lean control (LC) rats were all fed normal chow. Rats groups were maintained on the diets for 21 days.
Project description:Faced by an alarming incidence of metabolic diseases including obesity and type 2 diabetes worldwide, there is an urgent need for effective strategies for preventing and treating these common diseases. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a crucial role in metabolism. We isolated the amorfrutins from edible parts of the plants Glychyrrhiza foetida and Amorpha fruticosa, and identified these natural products as a new chemical class to treat insulin resistance and diabetes by selectively activating PPARγ. In contrast to existing synthetic PPARγ drugs, the amorfrutins display unique properties by separating insulin sensitization from unwanted side effects. In obese mouse models, amorfrutin treatment significantly improved important metabolic and inflammatory parameters. In summary, PPARγ activation by selective amorfrutins derived from edible biomaterial is a promising approach to combat metabolic diseases and other diseases in which PPARγ is involved in.
Project description:The purpose of this study was to evaluate the effect of progressive weight loss (5, 10, 15% weight loss) on metabolic function such as multi-organ insulin sensitivity and beta-cell function in obese people. We conducted microarray analysis to determine the effect of progressive weight loss on adipose tissue gene expression profile. We examined subcuntaneous adipose tissue samples obtained from 9 obese subjects before (A) and after 5% (B), 10% (C) and 15% (D) weight loss (total 36 samples).
Project description:We screened intronic microRNAs dysregulated in liver of obese mouse models to identify previously uncharacterized coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach identified the expression of Ectodysplasin A (Eda), the causal gene of X-linked hypohidrotic ectodermal dysplasia (XLHED; MIM 305100) was strongly increased in liver of obese mouse models both in rodents and humans.Eda expression in murine liver is controlled via PPARγ activation, increases in circulation and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. Consistently, bi-directional modulation of hepatic Eda expression in mouse models affects systemic glucose metabolism with alterations of muscle insulin signaling, revealing a novel role of EDA as an obesity-associated hepatokine, which impairs insulin sensitivity in skeletal muscle.
Project description:The purpose of this study was to evaluate the effect of progressive weight loss (5, 10, 15% weight loss) on metabolic function such as multi-organ insulin sensitivity and beta-cell function in obese people. We conducted microarray analysis to determine the effect of progressive weight loss on adipose tissue gene expression profile.
Project description:OBJECTIVE Diet intervention in obese adults is the first strategy to induce weight loss and to improve insulin sensitivity. We hypothesized that improvements in insulin sensitivity after weight loss from a short-term dietary intervention tracks with alterations in expression of metabolic genes and abundance of specific lipid species. RESEARCH DESIGN AND METHODS Eight obese, insulin resistant, non-diabetic adults were recruited to participate in a three-week low calorie diet intervention study (1000 kcal/day). Fasting blood samples and vastus lateralis skeletal muscle biopsies were obtained before and after the dietary intervention. Clinical chemistry and measures of insulin sensitivity were determined. Unbiased microarray gene expression and targeted lipidomic analysis of skeletal muscle was performed. RESULTS Body weight was reduced, insulin sensitivity (HOMA-IR) was enhanced, and serum insulin concentration and blood lipid (triglyceride, cholesterol, LDL and HDL) levels were improved after dietary intervention. Gene set enrichment analysis of skeletal muscle revealed that oxidative phosphorylation and inflammatory processes were among the most enriched KEGG-pathways identified after dietary intervention. mRNA expression of PDK4 and MLYCD increased, while SCD decreased in skeletal muscle after dietary intervention. Dietary intervention altered the intramuscular lipid profile of skeletal muscle, with changes in content of phosphatidylcholine and triglyceride species among the pronounced. CONCLUSIONS Short-term diet intervention and weight loss in obese adults alters metabolic gene expression and reduces specific phosphatidylcholine and triglyceride species in skeletal muscle, concomitant with improvements in clinical outcomes and enhanced insulin sensitivity.
Project description:We report that a high affinity, selective, small molecule Gpr120 agonist (cpdA), exerts potent anti-inflammatory effects on macrophages in vitro, and in obese mice in vivo. Gpr120 agonist treatment of high fat diet (HFD)/obese mice causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new insulin sensitizing drugs for the treatment of Type 2 diabetes and other human insulin resistant states in the future. Examination of effects of DHA and compound A on primary macrophages stimulated by LPS, 3 replicates for each condition
Project description:Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Methods: Male ZDF rats at six week of age were randomly divided into two groups and administered testosterone undecanoate(TU) or vehicle alone every three days for three weeks. After three weeks, overnight fasted blood glucose and insulin concentrations were significantly higher and glucose tolerance and insulin sensitivity were impaired in TU treated ZDF rats compared to vehicle controls. Moreover, increased serum triglycerides and VLDL were observed in TU treated rats. To further explore the observed metabolic changes in TU treated ZDF rats, whole-genome microarray analysis were performed on isolated liver mRNA. Results: Array analysis revealed that many hepatic lipogenic genes were increased in male ZDF rat livers treated with TU. Interestingly, SREBP-1c, a key transcriptional activator of lipogenic genes and PGC-1 , an activator of SREBP-1c were induced while small heterodimer partner, a transcriptional inhibitor of lipogenic genes was suppressed by TU treatment. Exploring signaling pathways for these effects, we observed that the hepatic activated forms of STAT3 and AMPK, two known inhibitors of hepatic lipogenesis, were decreased in TU treated rat. Moreover, we observed that DHT could block the induction of STAT3 and AMPK phosphorylation in treated primary human hepatocytes. Preliminarily, in the leptin receptor positive zucker diabetic lean male rats, we observed that TU treatment has an oppose effect on the hepatic lipogenic genes, suggesting that hepatic leptin signaling may influence androgen signaling. Further insight into the relationship between androgen deficiency and the leptin system may help improve treatment of the metabolic syndrome. Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Two-condition experiment. (1) lean ZDF rats (control) vs. lean ZDF rats (testosterone treated). (2) obese ZDF rats (control) vs. obese ZDF rats (testosterone treated). Biological replicates: 4 control replicates, 4 treated replicates.
Project description:Whole genome expression profilling were undertaken in high fat diet (HFD)-fed obese rats to identify the genetic factors associated with metabolic dysfunction, insulin resistance and obesity.