Project description:Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, the role of TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be co-infections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question our lab observed the effects of EV uptake by T. vaginalis on parasite gene expression. Using RNA-seq, we showed that TvEVs upregulate expression of predicted parasite membrane proteins and identified a novel adherence factor, heteropolysaccharide binding protein (HPB2).
Project description:Ornithine decarboxylase (ODC), the lead enzyme in polyamine biosynthesis, was partially purified from Trichomonas vaginalis and its kinetic properties were studied. The enzyme appears to be of special significance in this anaerobic parasite, since the arginine dihydrolase pathway generates ATP as well as putrescine from arginine. ODC from T. vaginalis had a broad substrate specificity, decarboxylating ornithine (100%), lysine (1.0%) and arginine (0.1%). The enzyme had a pH optimum of 6.5, a temperature optimum of 37 degrees C and was pyridoxal 5'-phosphate-dependent. Attempts to separate ornithine- from lysine-decarboxylating activity by thermal-stability and pH-optima curves were not successful. Although Km values for ornithine and lysine were 109 and 91 microM respectively, and the Vmax values for these substrates were 1282 and 13 nmol/min per mg of protein respectively, the most important intracellular substrate is ornithine, since intracellular ornithine levels are 3.5 times those of lysine and extracellular putrescine levels are 7.5 times those of cadaverine. Ornithine was also an effective inhibitor of lysine-decarboxylating activity (Ki 150 microM), whereas lysine was relatively ineffective as inhibitor of ornithine-decarboxylating activity (Ki 14.5 mM). Crude ODC activity was localized (86%) in the 43,000 g supernatant and 3303-fold purification was obtained by (NH4)2SO4 salting and DEAE-Sephacel, agarose-gel and hydroxyapatite chromatography steps. The enzyme bound difluoro[3H]methylornithine ([3H]DFMO) with a ratio of drug bound to activity of 2500 fmol/unit, where 1 unit corresponds to 1 nmol of CO2 released from ornithine/min. The enzyme had a native M(r) of 210000 (gel filtration), with a subunit M(r) of 55,000 (by SDS/PAGE), suggesting that the trichomonad enzyme is a tetramer. From the subunit M(r) and binding ratio of DFMO, there is about 137 ng of ODC per mg of T. vaginalis protein (0.013%). The significant amount of ODC protein present supports the view that putrescine synthesis in T. vaginalis plays an important role in the metabolism of the parasite.
Project description:We aimed to delineate mechanisms of T. vaginalis resistance using transcriptome profiling of metronidazole (MTZ)-resistant and sensitive T. vaginalis clinical isolates.
Project description:In this study, we performed deep sequencing and bioinformatics analyses of short RNAs from three strains of Trichomonas vaginalisto identify and characterize novel type of small RNAs. We detected a new type of small RNA from tranfer RNA known as tRFs and tRNA-halves.