Project description:Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, the role of TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be co-infections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question our lab observed the effects of EV uptake by T. vaginalis on parasite gene expression. Using RNA-seq, we showed that TvEVs upregulate expression of predicted parasite membrane proteins and identified a novel adherence factor, heteropolysaccharide binding protein (HPB2).
Project description:Recent advances in tests for the sexually transmitted protozoan parasite Trichomonas vaginalis have increased opportunities for diagnosis and treatment of this important sexually transmitted infection. This review summarises currently available tests, highlighting their performance characteristics, advantages and limitations. The recent development of molecular tests for the detection of T vaginalis, including rapid antigen detection and nucleic acid amplification tests, has significantly improved the quality of diagnostics for trichomoniasis, particularly in women. In light of the expanded menu of testing options now available, improved recognition and better control of trichomoniasis are in sight, which should enable the eventual reduction of adverse reproductive consequences associated with T vaginalis infection.
Project description:BackgroundThe human protozoan parasite Trichomonas vaginalis is an organism of interest for understanding eukaryotic evolution. Despite having an unusually large genome and a rich gene repertoire among protists, spliceosomal introns in T. vaginalis appear rare: only 62 putative introns have been annotated in this genome, and little or no experimental evidence exists to back up these predictions.ResultsThis study revisited the 62 annotated introns of T. vaginalis derived from the genome sequencing plus previous publications. After experimental validation and a new genome-wide search, we confirmed the presence of introns in 32 genes and 18 others were concluded to be intronless. Sequence analyses classified the validated introns into two types, based on distinctive features such as length and conservation of splice site motifs.ConclusionsOur study provides an updated list of intron-containing genes in the genome of T. vaginalis. Our findings suggests the existence of two intron 'families' spread among T. vaginalis protein-coding genes. Additional studies are needed to understand the functional separation of these two classes of introns and to assess the existence of further introns in the T. vaginalis genome.
Project description:The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G(1) phase and G(2) phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle.