Project description:Puccinia graminis f.sp. tritici (Pgt), the causal agent of stem rust disease in wheat, is one of the most destructive pathogens and can cause severe yield losses. Here, we utilize Hi-C sequencing technology to scaffold and phase the haplotypes for the genome assembly of a US Pgt isolate 99KS76A-1.
Project description:Puccinia graminis f. sp. tritici is the cause of wheat stem rust. A microarray was designed from genes predicted from the P. graminis f. sp. tritici genome assembly, and gene expression measured for four conditions which include wheat or barley infecting growth stages initiated by urediniospores. mRNA was prepared from fresh urediniospores, uredinospores germinated for 24 hr, wheat seedlings infected with urediniospores for 8 days, and barley seedlings infected with urediniospores for 8 days. The asexual uredinial infection cycle on wheat produces additional urediniospores, which can start new cycles of wheat infection and are readily spread by aerial transport. This expression data is further described in Duplessis et al, Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici
Project description:The RNA sequencing analysis was undertaken to investigate the transcriptomic changes in adult wheat inoculated with Puccinia graminis f. sp. tritici the causal agent of stem rust disease. The project firstly aims to compare gene expression in one susceptible wheat line with two wheat lines exhibiting adult plant resistance to the stem rust. Secondly, the project aims to examine the temporal changes in gene expression in wheat after inoculation. Wheat plants was grown until maturity under greenhouse conditions. Plants were inoculated with Puccinia graminis f. sp. tritici and the flag leaf sheath sampled for RNA sequencing. The project aims to give essential insight into the adult plant resistance response in wheat to Puccinia graminis f. sp. tritici inoculation.
Project description:Puccinia graminis f. sp. tritici is the cause of wheat stem rust. A microarray was designed from genes predicted from the P. graminis f. sp. tritici genome assembly, and gene expression measured for four conditions which include wheat or barley infecting growth stages initiated by urediniospores. mRNA was prepared from fresh urediniospores, uredinospores germinated for 24 hr, wheat seedlings infected with urediniospores for 8 days, and barley seedlings infected with urediniospores for 8 days. The asexual uredinial infection cycle on wheat produces additional urediniospores, which can start new cycles of wheat infection and are readily spread by aerial transport. This expression data is further described in Duplessis et al, Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici A total of 12 samples were analyzed, including three biological replicates of the four conditions.
Project description:Transcriptomic profiling was done on barley samples incoulated with different Puccinia graminis f. sp. tritici (Pgt) isolates of varying virulence profile on barley stem rust resistance gene rpg4/5 and Rpg1. Several differentally expressed host and pathogen genes were identified while comparing gene expression profiles between group of samples inoculated with isoaltes of varying virulence. Several variants with genes of pathogen were idnetified that are possibly associated with virulence to rpg4/5.