Project description:This SuperSeries is composed of the following subset Series: GSE21574: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: QKI data GSE21575: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: IGF2BP data GSE21577: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: miRNA inhibition data GSE21918: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: sequencing data Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE33569: In vivo and transcriptome-wide identification of RNA-binding protein target sites [PAR-CLIP] GSE33573: In vivo and transcriptome-wide identification of RNA-binding protein target sites [RNA-Seq] Refer to individual Series
Project description:AGO-PAR-CLIP was employed to identify microRNA binding sites in BCBL-1, a Kaposi's sarcoma-associated herpesvirus (KSHV) infected B-cell line and DG75, a KSHV negative B-cell line as a control. By using our novel computational method (PARma) and differential analysis of PAR-CLIP data, highly accurate target sites of KSHV microRNAs can be defined. Examination of microRNA target sites in two different cell lines using replicate PAR-CLIP experiments
Project description:The conserved human LIN28 RNA-binding proteins function in development, maintenance of pluripotency and oncogenesis. We used PAR-CLIP and a newly developed variant of this method, iDo-PAR-CLIP, to identify LIN28B targets as well as sites bound by the individual RNA binding domains of LIN28B in the human transcriptome at nucleotide resolution. The position of target binding sites reflected the known structural relative orientation of individual LIN28B binding domains, validating iDo-PAR-CLIP. Our data suggest that LIN28B directly interacts with most expressed mRNAs and members of the let-7 microRNA family. The Lin28 binding motif detected in pre-let-7 was enriched in mRNA sequences bound by LIN28B. Upon LIN28B knock down, cell proliferation and the cell cycle were strongly impaired. Quantitative shotgun proteomics of LIN28B depleted cells revealed significant reduction of protein synthesis from its RNA targets that function in translation, mRNA splicing and cell cycle control. Computational analyses provided evidence that the strength of protein synthesis reduction correlated with the location of LIN28B binding sites within target transcripts. We used PAR-CLIP and a newly developed variant of this method, iDo-PAR-CLIP, to identify LIN28B targets as well as sites bound by the individual RNA binding domains of LIN28B in the human transcriptome at nucleotide resolution.
Project description:High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute protein members can pinpoint microRNA target sites within tens of bases, but leaves the identity of the microRNA unresolved. A flexible computational framework that integrates sequence with cross-linking features reliably identifies the microRNA family involved in each binding event, considerably outperforms sequence-only approaches, and quantifies the prevalence of noncanonical binding modes. Ago2 (Argonaute 2) PAR-CLIP and RNA deep sequencing of Epstein-Barr virus B95.8-infected Lymphoblastoid Cell Lines (LCLs)