Project description:Through digital rectal examinations and routine prostate-specific antigen (PSA) screening, early treatment of prostate cancer has become possible. However, prostate cancer is a complex and heterogeneous disease. In many patients, cancer cells can invade adjacent tissues and metastasize to other tissues, resulting in difficultly to cure. For the treatment of primary and metastatic prostate cancer, a significant problem is how to improve its survival time. Here, we collect 7 untreated primary and metastatic prostate cancer and 6 benign prostate hyperplasia samples under ultrasound guidance by experienced radiologists using the 18-G needle. Through mass spectrometry, we have completely depicted the protein atlas of primary and metastatic prostate cancer and benign prostate hyperplasia. Through bioinformatics analysis, experimental verification, and combined clinical data, we discover that the ribosome signaling pathway promotes the progression of prostate cancer and is associated with a poor prognosis. Among them, Mrpl1, Mrpl4, and Mrpl16 may be biomolecular markers for diagnosis and prognosis.
Project description:Whole-transcript and exon-level expression data for human primary and metastatic prostate cancer samples and control normal adjacent benign prostate
Project description:An integrative analysis of this compendium of proteomic alterations and transcriptomic data was performed revealing only 48-64% concordance between protein and transcript levels. Importantly, differential proteomic alterations between metastatic and clinically localized prostate cancer that mapped concordantly to gene transcripts served as predictors of clinical outcome in prostate cancer as well as other solid tumors. Keywords: prostate cancer progression 13 individual benign prostate, primary and metastatic prostate cancer samples and 6 pooled samples from benign,primary or metastatic prostate cancer tissues.
Project description:Samples of benign prostate tissue, localized prostate cancer tissue, and metastatic prostate cancer tissue are profiled to study expression changes in diagnosis and progression of prostate cancer. Each tissue sample is also profiled for metabolomics data Keywords: Cancer Progression 41 samples were analyzed (16 benign prostate tissue, 12 local prostate cancer tissue, 13 metastatic prostate cancer tissue)
Project description:Here we used Illumina NGS for high-throughput profiling of the DNA methylome in seven human benign prostate tissues, seven human primary prostate cancer and six human castration resistant prostate cancer patient samples. These data were used to profile the CpG cytosine methylation pattern at single base resolution in each sample and to determine differentially methylated cytosines and regions among samples. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS, MspI,150M-bM-^@M-^S400 bp size fractions) of 20 human prostate tissues (benign prostate tissues, localized and metastatic prostate cancer)
Project description:Twenty-nine radical prostatectomy samples were laser capture microdissected (LCM) to obtain the most common Gleason patterns (patterns 3, 4, and 5) and matched benign adjacent luminal prostate epithelial cells. We performed cDNA microarrays on matched cancer and adjacent normal samples and identified an 86-gene model capable of distinguishing low Gleason grade (pattern 3) from high Gleason grade (pattern 4 and 5) cancers, which contributes a set of potential targets for modulating the development and progression of the lethal prostate cancer phenotype. Keywords: disease state analysis
Project description:Samples of benign prostate tissue, localized prostate cancer tissue, and metastatic prostate cancer tissue are profiled to study expression changes in diagnosis and progression of prostate cancer. Each tissue sample is also profiled for metabolomics data Keywords: Cancer Progression
Project description:Androgens are a prequisite for the development of human prostate and prostate cancer. Androgen action is mediated via androgen receptor. Androgen ablation therapy is used for the treatment of metastasized prostate cancer. The aim of the study was to identify genes differentially expressed in benign human prostate, prostate cancer and in prostate tissue three days after castration. These genes are potential diagnostic and therapeutic targets for prostate cancer and benign prostatic hyperplasia. We used microarrays to examine the gene expression profiles in benign prostate adjacent to prostate cancer and prostate cancer in radical prostatectomy specimens and in prostate tissue samples taken 3 days after surgical castration performed for treatment of prostate cancer.
Project description:Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in selected prostate tissues and cell lines using Methylplex-Next Generation Sequencing (M-NGS). Hidden Markov Model based next generation sequence analysis identified ~68,000 methylated regions per sample. While global CpG Island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively. We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6,691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer specific, including numerous novel DMRs. A novel cancer specific DMR in WFDC2 promoter showed heavy methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion positive and negative cancers. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
Project description:Transcription profiling by array of human benign prostate, primary and metastatic prostate cancer samples to reveal signatures of metastatic progression