Project description:Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1-/- and Bcl-3-/- mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse. 24 mice were used based on 4 mice per group, 3 mouse genotypes (wild type, Nfkb1-/-, Bcl3-/-) and 2 conditions (weight-bearing and unloaded).
Project description:Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1-/- and Bcl-3-/- mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.
Project description:To identify atrophy genes directly targeted by Bcl-3 transactivator at a genome wide level, we performed whole transcript expression array and ChIP-seq for muscles from weight bearing or 5-day hind limb unloaded mice. Genes that showed increased expression with unloading and a Bcl-3 peak in the promoter (from ChIP-seq data) were considered as Bcl-3 direct targets during disuse atrophy. Using ChIP array, we identified 241 direct targets for Bcl-3. Our data describe Bcl-3 as a global regulator both of the proteolysis and the change in energy metabolism that are essential components of muscle atrophy due to disuse. Disuse skeletal muscle atrophy was induced by hind limb unloading. Weight bearing (WB) or 5-day hind limb unloaded (HU) muscles were harvested for total RNA isolation and processed for whole transcript expression profiling. We chose to examine gene expression and Bcl-3 binding from 5-day unloaded muscles because our previous time course study of disuse atrophy suggested that most genes are differentially regulated at this time point, and thus, would best represent the time for Bcl-3 binding to the gene targets of the NF-kB transcriptional network.
Project description:To identify atrophy genes directly targeted by Bcl-3 transactivator at a genome wide level, we performed whole transcript expression array and ChIP-seq for muscles from weight bearing or 5-day hind limb unloaded mice. Genes that showed increased expression with unloading and a Bcl-3 peak in the promoter (from ChIP-seq data) were considered as Bcl-3 direct targets during disuse atrophy. Using ChIP array, we identified 241 direct targets for Bcl-3. Our data describe Bcl-3 as a global regulator both of the proteolysis and the change in energy metabolism that are essential components of muscle atrophy due to disuse.
Project description:Existing data suggest that NF-kappaB signaling is a key regulator of cancer-induced skeletal muscle wasting. However, identification of the components of this signaling pathway and of the NF-κB transcription factors that regulate wasting is far from complete. In muscles of C26 tumor bearing mice, overexpression of d.n. IKKβ blocked muscle wasting by 69%, the IκBα-super repressor blocked wasting by 41%. In contrast, overexpression of d.n. IKKα or d.n. NIK did not block C26-induced wasting. Surprisingly, overexpression of d.n. p65 or d.n. c-Rel did not significantly block muscle wasting. Genome-wide mRNA expression arrays showed upregulation of many genes previously implicated in muscle atrophy. To test if these upregulated genes were direct targets of NF-κB transcription factors, we compared genome-wide p65 or p50 binding to DNA in control and cachectic muscle using ChIP-sequencing. Bioinformatic analysis of ChIP-seq data from control and C26 muscles showed increased p65 and p50 binding to a few regulatory and structural genes but only two of these genes were upregulated with atrophy. The p65 and p50 ChIP-seq data are consistent with our finding of no significant change in protein binding to an NF-κB oligo in a gel shift assay. Taken together, these data support the idea that although inhibition of IκBα, and particularly IKKβ, blocks cancer-induced wasting, the alternative NF-κB signaling pathway is not required. In addition, the downstream NF-κB transcription factors do not regulate the transcriptional changes. These data are consistent with the growing body of literature showing that there are NF-κB-independent substrates of IKKβ and IκBα that regulate physiological processes.
Project description:Disuse atrophy is a common clinical phenomenon which significantly impacts muscle function and activities of daily living. In this study, we did expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Keywords: Differentiation design
Project description:Loss of muscle mass and strength following disuse followed by impaired muscle recovery likely contribute to sarcopenia in older adults. Metformin and leucine individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor under the conditions of disuse atrophy and recovery in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET+LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice (22-24 mo). We were also interested if these muscle responses correspond to changes in satellite cells and ECM abundance. Aged mice were subjected to 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14d RL). Metformin (MET), leucine (LEU), or MET+LEU was administered via drinking water and were compared to Vehicle-treated mice. We observed that MET+LEU increased whole body grip strength, muscle specific force and satellite cell abundance during HU but did not alter muscle size during HU or RL. Moreover, MET+LEU treatment increased ECM turnover driven by a decrease in collagen IV content during 7 and 14d RL. Transcriptome analysis revealed that MET+LEU altered Gene Set Enrichment Analysis hallmark pathways related to inflammation and myogenesis during HU. Together , MET+LEU was able to improve muscle quality during disuse and recovery in aging possibly by increasing muscle satellite cell content and reducing excessive ECM accumulation.
Project description:A mechanistic understanding of the age-related impairment to skeletal muscle regrowth following disuse atrophy as well as therapies to augment recovery in the aged are currently lacking. Mechanotherapy in the form of cyclic compressive loading has been shown to benefit skeletal muscle under a variety of paradigms, but not during the recovery from disuse in aged muscle. To determine whether mechanotherapy promotes extracellular matrix (ECM) remodeling, a critical aspect of muscle recovery after atrophy, we performed single cell RNA sequencing (scRNA-seq) of gastrocnemius muscle cell populations, stable isotope tracing of intramuscular collagen, and histology of the ECM in adult and aged rats recovering from disuse, with and without mechanotherapy. ECM remodeling-related gene expression in fibro-adipose progenitor cells (FAPs) was absent in aged compared to adult muscle following 7 days of recovery, and instead were enriched in chemoattractant genes. There was a significantly lower expression of genes related to phagocytic activity in aged macrophages during recovery, despite enriched chemokine gene expression of numerous stromal cell populations, including FAPs and endothelial cells. Mechanotherapy reprogrammed the transcriptomes of both FAPs and macrophages in aged muscle recovering from disuse to restore ECM-and phagocytosis-related gene expression, respectively. Stable isotope labeling of intramuscular collagen and histological evaluation confirmed mechanotherapy-mediated remodeling of the ECM in aged muscle recovering from disuse. In summary, our results highlight mechanisms underlying age-related impairments during the recovery from disuse atrophy and promote mechanotherapy as an intervention that reprograms the muscle transcriptional environment more similar to that of adult skeletal muscle.
Project description:Disuse atrophy is a common clinical phenomenon which significantly impacts muscle function and activities of daily living. In this study, we did expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Keywords: Differentiation design 28 Skeletal muscle biopsies from the medial gastrocnemius in patients with an ankle fracture (4 patients, 8 profiles) and from healthy volunteers (2 subjects, 4 profiles) subjected to 4-11 days of mobilization, as well as from the non-immobilized contralateral legs (16 profiles).
Project description:Disuse muscle atrophy occurs consequent to prolonged limb immobility or bed rest, which represents an unmet medical need. As existing animal models of limb immobilization often cause skin erosion, edema, and other untoward effects, we here report an alternative method via thermoplastic immobilization of hindlimbs in mice. While significant decreases in the weight and fiber size were noted after 7 days of immobilization, no apparent skin erosion or edema was found. To shed light onto the molecular mechanism underlying this muscle wasting, we performed the next-generation sequencing analysis of gastrocnemius muscles from immobilized versus non-mobilized legs. Among a total of 55,487 genes analyzed, 787 genes were differentially expressed (> 4-fold; 454 and 333 genes up- and down-regulated, respectively), which included genes associated with muscle tissue development, muscle system process, protein digestion and absorption, and inflammation-related signaling. To the best our knowledge, this is the first study that used RNA-seq to reveal changes in the skeletal muscle transcriptome profiling in response to disuse atrophy without denervation. From a clinical perspective, this model may help understand the molecular/cellular mechanism that drives muscle disuse and identify therapeutic strategies for this debilitating disease.