Project description:Expression patterns of Dendritic cells co cultured with cord blood MSC were compared with cord blood MSC (USSC). Putative immune suppressive candidates were tested to explain this inhibition. We find that cord blood MSC themselves are hardly immunogenic as tested with allogeneic T-cells. Dendritic cells cocultured with second party T-cells evoked abundant proliferation that was inhibited by third party cord blood USSC. Optimal inhibition was seen with one cord blood USSC for every dendritic cell. Blocking HLA-G only saw partial recovery of proliferation. Several cytokines, prostaglandins, gangliosides, enzymes like arginase, NO synthase and indole amine 2,3-dioxygenase as well as the induction of Treg were not involved in the inhibition based on the microarrays and functional tests. Although the mechanism by which it does so remains partially undefined and subject to further study, cord blood multipotent stromal cells are strong inhibitors of the immune response and therefore allow their use in tissue regeneration settings in an allogeneic setting. Keywords: Adult stem cells, developmental biology, gene expression, genomics, human cord blood, mesenchymal stem cells, cel type comparison Dendritic cells co cultured with cord blood MSC compared with cord blood MSC (USSC).
Project description:Expression patterns of Dendritic cells co cultured with cord blood MSC were compared with cord blood MSC (USSC). Putative immune suppressive candidates were tested to explain this inhibition. We find that cord blood MSC themselves are hardly immunogenic as tested with allogeneic T-cells. Dendritic cells cocultured with second party T-cells evoked abundant proliferation that was inhibited by third party cord blood USSC. Optimal inhibition was seen with one cord blood USSC for every dendritic cell. Blocking HLA-G only saw partial recovery of proliferation. Several cytokines, prostaglandins, gangliosides, enzymes like arginase, NO synthase and indole amine 2,3-dioxygenase as well as the induction of Treg were not involved in the inhibition based on the microarrays and functional tests. Although the mechanism by which it does so remains partially undefined and subject to further study, cord blood multipotent stromal cells are strong inhibitors of the immune response and therefore allow their use in tissue regeneration settings in an allogeneic setting. Keywords: Adult stem cells, developmental biology, gene expression, genomics, human cord blood, mesenchymal stem cells, cel type comparison
Project description:Unrestricted somatic stem cells (USSCs) from human cord blood show distinct differences to multipotent stromal cells isolated from human bone marrow and placenta both at the gene array and functional level. Fibroblast samples and raw data also included in E-TABM-724.
Project description:The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host and highlight the plasticity of the fetal immune system following viral exposure in utero. RNA was extracted from 15 cord blood samples comprising of healthy cord blood monocytes (n=4), HBV-exposed cord blood monocytes (n=3), healthy cord blood plasmacytoid dendritic cells (n=4), and HBV-exposed cord blood plasmacytoid dendritic cells (n=4). Healthy adult peripheral blood monocytes (n=3) were included for comparison. The immune profile was analyzed using Nanostring and nCounter® GX Human Immunology Kit v1, comprising probes for a total of 511 immune genes.
Project description:Circulating osteoprogenitor (COP) are a population of cell in the peripheral circulation that possess functional and phenotypical characteristics of multipotent stromal cells (MSCs). While there is functional overlap, it is not known how COP cells are related to bone marrow (BM)-derived MSCs (BM-MSCs) and other better characterized stromal progenitor populations such as adipose-derived stromal cells (ASCs). This study compares COP cells to BM-MSCs and ASCs through detailed transcriptomic and proteomic analyses. COP cells have a distinct gene and protein expression pattern to BM-MSCs and ASCs, with a significantly stronger immune footprint, likely owing to their hematopoietic lineage. However, they also have a similar pattern of expression BM-MSCs and ASCs, in genes and proteins in progenitor cell differentiation and proliferation pathways. This study shows COP cells to be a unique but functionally similar population to BM-MSCs and ASCs, sharing their proliferation and differentiation capacity, but with a strong immune phenotype, with potential for translational regenerative medicine strategies.
Project description:Umbilical cord blood banking is critical for the success of umbilical cord blood transplants. Here we analyzed transcriptomic differences between 27-year cryopreserved umbilical cord blood hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) and those derived from fresh cord blood. We also leveraged differences in engraftment capacity to examine the transcriptomes of HSCs/HPCs defined by engraftment capacity, demonstrating the feasibility of this approach for identifying potency markers to aid in the selection of cord blood units for transplantation and revealing novel potential regulators of cord blood HSC/HPC engraftment.
Project description:Global gene expression analysis of (a) human embryonic stem cells, (b) adult fibroblasts with and without nucleofection of SOKM, (c) CD34+ cord blood cells at various time points during induction of pluripotency with SOKM, with or without co-culture with bone marrow stromal cells (BMSC), and (d) resulting stromal primed and non-stromal primed cord blood CD34+ myeloid iPSC
Project description:In homeostasis, because of the blood-brain barrier, immune cells rarely infiltrate the central nervous system (CNS). However, after spinal cord injury (SCI), many cells, including both myeloid and T cells, infiltrate the spinal cord. However, the role immune cells play in SCI remains controversial. We are curious whether after SCI there are self-peptides that are released and sensed by T cells that then modulate response to CNS injury.
Project description:Despite its therapeutic potential and unique immunological properties, the immune composition of umbilical cord blood lacks consistent and comprehensive characterizations. Human umbilical cord blood (UCB) is often discarded after delivery and is difficult to obtain for research purposes. Furthermore, most research on UCB is focused on properties of CD34+ hematopoietic stem cells for transplantation. The Binns Program for Cord Blood Research at Stanford University has the unique advantage of regular collection and isolation of mononuclear cells (MNC) from UCB donors. This study provides a robust characterization of the immune subset compositions of the CD34-negative MNC fraction of UCB (n=50). The study also compares the UCB data to adult peripheral blood (PB) mononuclear cells to identify differences in immune maturity. Using flow cytometry and single-cell RNA sequencing (scRNA-seq), we analyzed UCB and adult PB MNC samples to characterize the cell surface protein and transcriptomic profiles of different immune subsets. Our study findings bring a higher-definition understanding of the unique immunological properties of umbilical cord blood. Study findings reveal a distinct immune profile in UCB, such as a higher average percentage of CD19 B Lymphocytes, CD4 T Cells, CD4 Naive T Cells, CD4 Recent Thymic Emigrants, CD8 Naive T Cells, CD8 Recent Thymic Emigrants, and CD19 Naive B Cells compared to adult PB. Additionally, there were fewer CD19 Memory B Cells in UCB compared to PB. The scRNA-Seq showed concordance in the proportion of immune cell types but captured more differentiated subtypes of cells. Additionally, scRNA-Seq showed unique clustering patterns in UCB, which reflect cell types that converge in adulthood as the immune system matures. These analyses yield the intriguing possibility that the immune heterogeneity of individuals at birth gives way to more stereotyped immune subsets as the immune system is exposed to the external environment and undergoes maturation. Overall, our findings provide a robust characterization of MNC UCB immune subsets and insights into how immune function develops from birth to adulthood.