Project description:We found that TLS can work as a PGC-1alpha cofactor and this assay was carried out to test the functional dependency of TLS on PGC-1alpha on a whole genome scale
Project description:We found that TLS can work as a PGC-1alpha cofactor and this assay was carried out to test the functional dependency of TLS on PGC-1alpha on a whole genome scale Three independently-isolated cultures of primary hepatocytes from PGC-1α+/+ and PGC-1α-/- mice were infected with shTLS or control adenovirus. RNA was extracted by Trizol extraction, re-purified with RNAeasy (Invitrogen), and checked for integrity and quantity with the Agilent Bio-Analyzer QC. RNA was amplified and labeled with the One-Color Microarray-Based Gene Expression Analysis Protocol (Agilent Technologies, Palo Alto, CA, USA). Samples were hybridized to a G4122F 4x44K whole mouse genome microarray (Agilent Technologies). Arrays were scanned at 5 mm resolution with a G2565BA DNA microarray scanner (Agilent Technologies) at the default settings for 4x44k format one-color arrays. Images were analyzed using Feature Extraction software v10.1.1.1 (Agilent Technologies). Raw signals were thresholded to 1 and normalized by quantile (Bolstad et al., 2003) was performed using GeneSpring software. Data were analyzed on the log2 scale. Default flags were considered as absent, except for saturated spots that were flagged as marginal.
Project description:Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. Microarray analysis revealed that a significant proportion of PGC-1alpha-dependent changes in gene expression overlapped with age-associated effects, and aging muscle and muscle lacking PGC-1alpha shared gene signatures of impaired electron transport chain activity and TGFbeta signalling.
Project description:Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. Microarray analysis revealed that a significant proportion of PGC-1alpha-dependent changes in gene expression overlapped with age-associated effects, and aging muscle and muscle lacking PGC-1alpha shared gene signatures of impaired electron transport chain activity and TGFbeta signalling. Gastrocnemius muscle mRNA from young (10 week old) and old (24 month old) wild-type and knock-out (muscle-specific PGC-1alpha, myogenin-cre) C57Bl/6N/6J/129 mice
Project description:PGC-1alpha; is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha; are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta; is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1α-independent manner. Despite having reduced mitochondrial function, PGC-1alpha; null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha; in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.
Project description:Amyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS. We used microarray analysis to identify PGC-1alpha target genes in the brain.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.